Datos estadísticamente significativos

¿Has utilizado alguna vez una prueba estadística? Es un tipo de prueba matemática que se utiliza para analizar datos. Utilizar una prueba estadística ayuda a los científicos a averiguar si los datos que han recogido demuestran su teoría. De lo contrario, no son más que una colección de números.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Datos estadísticamente significativos?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    ¿Te interesan los datos estadísticamente significativos? ¡Sigue leyendo!


    Datos estadísticamente significativos: Definición

    Empecemos con una definición.

    Los datosestadísticamente significativos se refieren a los resultados de un experimento que probablemente se atribuyan a una causa específica.

    Si los datos de un experimento son estadísticamente significativos, es poco probable que el resultado se haya producido por casualidad.

    Es importante tener en cuenta el error de muestreo, la probabilidad y la certeza.

    • Error de muestreo: error estadístico que se produce cuando un analista selecciona una muestra que no representa efectivamente a toda la población.

    • Probabilidad: probabilidad de que ocurra un hecho.

    Probabilidad frente a certeza

    Nada en la vida es 100% seguro. Podrían crecerte alas y adquirir la capacidad de volar. Sí, es muy poco probable, pero no imposible. No hay forma de saberlo con certeza.

    Por eso, en estadística utilizamos la probabilidad, no la certeza.

    Análisis estadístico y datos estadísticamente significativos

    ¿Qué es la estadística y por qué la necesitamos?

    Las estadísticas son pruebas que se utilizan para analizar, interpretar y presentar datos numéricos.

    Sin pruebas estadísticas, nuestros datos no significan realmente nada. No son más que una colección de números. Pero analizando nuestros datos, podemos encontrar asociaciones o diferencias entre ellos, que respaldan nuestros resultados y nos ayudan a comprender mejor el entorno natural.

    Hipótesis

    Al planificar un experimento, los científicos formulan dos hipótesis: la hipótesis nula y la hipótesis alternativa.

    La hipótesis nula (H0) afirma que no habrá relaciones o diferencias significativas en los datos.

    La hipótesis alternativa (H1) afirma que habrá una relación o diferencia significativa en los datos.

    Amy quiere saber si los bebés prefieren jugar con juguetes azules antes que con juguetes naranjas.

    H0: Los bebés no prefieren jugar con juguetes azules a jugar con juguetes naranjas.

    H1: Los bebés prefieren jugar con juguetes azules a jugar con juguetes naranjas.

    Si el experimento muestra un resultado estadísticamente significativo, se rechazará la hipótesis nula. Si no muestra un resultado estadísticamente significativo, se aceptará la hipótesis nula.

    Comprobación de la significación estadística

    Para comprobar que los resultados de una prueba estadística son significativos, debemos comprobar el nivel de significación y los grados de libertad.

    Niveles de significación

    El nivel de significación (también llamado valor p) es la probabilidad de rechazar incorrectamente la hipótesis nula.

    El valor p describe la probabilidad, no la certeza.

    En biología y ciencias ambientales, el nivel de significación es 0,05. Esto significa que si hay menos de un 5% de probabilidades de rechazar incorrectamente la hipótesis nula, los datos se consideran estadísticamente significativos.

    Grados de libertad = n - 1, donde n es el tamaño del conjunto de datos.

    El uso de grados de libertad nos ayuda a encontrar valores críticos de corte para las pruebas estadísticas. Cuantos más grados de libertad haya, mayor será el valor crítico.

    Los valores críticos se encuentran en tablas. Puedes encontrarlas fácilmente en Internet o en un libro de estadística.

    Datos estadísticamente significativos: Varianza

    La varianza es una forma de medir las diferencias entre dos conjuntos de datos. Considera la dispersión de los puntos de datos dentro de un conjunto de datos.

    Los científicos pueden comprobar la varianza mediante la prueba F. ¿Cómo funciona?

    1. Calcula la media de tu conjunto de datos.

    2. Resta cada punto de datos de la media para hallar su desviación.

    3. Eleva al cuadrado cada desviación para asegurarte de que tienes un número positivo.

    4. Halla la suma de los cuadrados.

    5. Divide los cuadrados por n-1 para hallar las varianzas.

    6. Divide la varianza mayor entre la menor para hallar el valor F calculado.

    7. Compara el valor calculado con el valor crítico. Si el valor calculado es menor que el valor crítico, existe una varianza estadísticamente significativa.

    n es el tamaño de tu conjunto de datos.

    Varianza: Ejemplo

    Un meteorólogo quería ver si hay una diferencia significativa entre la velocidad del viento en Hull y la velocidad del viento en Nottingham. Redactó dos hipótesis.

    • Hipótesis nula: No hay diferencia significativa entre la velocidad del viento en Hull y la velocidad del viento en Nottingham.

    • Hipótesis alternativa: Existe una diferencia significativa entre la velocidad del viento en Hull y la velocidad del viento en Nottingham.

    Después, recopiló las medias mensuales y las utilizó para calcular la varianza.

    MesCasco Velocidad del viento (km/h)Casco DesviaciónCasco Desviación2Nottingham Velocidad del viento (km/h)Nottingham DesviaciónNottinghamDesviación2
    Enero24.3-4.217.6421.5-3.210.24
    Febrero23.0-2.98.4120.7-2.45.76
    Marzo21.5-1.41.9619.8-1.52.25
    Abril18.91.21.4417.60.70.39
    Mayo17.72.45.7616.81.52.25
    Junio16.33.814.4415.72.66.76
    Julio16.14.01615.72.66.76
    Agosto17.13.0916.02.35.29
    Septiembre19.30.80.6417.40.90.81
    Octubre21.4-1.31.6918.8-0.50.25
    Noviembre22.4-2.35.2919.4-1.11.21
    Diciembre23.3-3.210.2420.4-2.14.41
    Media20.1N.D.N.D.18.3N.D.N.D.
    SumaN/AN/A92.51N/AN/A46.38

    Para Hull, la velocidad media del viento es de 20,1 km/h. La suma de las desviaciones al cuadrado es 92,51.

    Desviación:

    92.51 ÷ (12-1)

    92.51 ÷ 11 = 8.41

    Para Nottingham, la velocidad media del viento es de 18,3 km/h. La suma de las desviaciones al cuadrado es 46,38.

    Varianza:

    46.38 ÷ (12-1)

    46.38 ÷ 11 = 4 .22

    Valor F calculado = 8,41 ÷ 4,22 = 1,99

    Por último, la meteoróloga halló el valor crítico f en una tabla. Se aseguró de comprobar los grados de libertad (en este ejemplo, 11) y el nivel de significación (0,05).

    Para esta prueba, el valor crítico F es 2,16.

    Como el valor F calculado es inferior al valor F crítico, existe una varianza estadísticamente significativa entre los conjuntos de datos. El meteorólogo rechazó la hipótesis nula.

    Datos estadísticamente significativos gráfico velocidad del viento varianza StudySmarterFig. 1 - Las velocidades mensuales del viento en las dos ciudades son muy similares. Sin un análisis estadístico, sería difícil saber que existe una diferencia.

    Datos estadísticamente significativos: Correlación

    El coeficiente de correlación de rango de Spearman se utiliza para comprobar si existe una asociación o relación entre dos variables. La relación puede ser positiva o negativa.

    • Relaciónpositiva : el aumento de una variable está asociado al aumento de la otra

    • Relación negativa: el aumento de una variable se asocia a una disminución de la otra

    Al realizar una prueba de Rango de Spearman, es importante comprender que correlación ≠ causalidad. Que dos cosas estén relacionadas no significa que una provoque un cambio en la otra.

    El consumo de chocolate per cápita está correlacionado con los Premios Nobel per cápita. Por desgracia, ¡eso no significa necesariamente que comer más chocolate te haga más inteligente!

    ¿Cómo funciona el rango de Spearman?

    1. Ordena los puntos de datos de ambas variables.

    2. Calcula la diferencia entre los rangos.

    3. Eleva al cuadrado la diferencia de rangos para asegurarte de que tienes un número positivo.

    4. Introduce los datos en la ecuación que se muestra a continuación para obtener el valor r calculado.

    5. Compara el valor calculado con el valor crítico. Si el valor calculado es igual o superior al valor crítico, existe una varianza estadísticamente significativa.

    Al clasificar los datos, puede hacerse de menor a mayor o de mayor a menor. Sólo asegúrate de que clasificas ambas variables utilizando el mismo método.

    Ecuación: p = 1 - (6 x ∑ D2) ÷ (n(n2-1))

    • D: diferencia de rangos
    • n: número de puntos de datos del conjunto

    Correlación: Ejemplo

    Un zoólogo quería saber si el número de manchas de un dálmata estaba relacionado con su peso. Redactó dos hipótesis.

    • Hipótesis nula: El número de manchas de un dálmata no está relacionado con su peso.

    • Hipótesis alternativa: El número de manchas de un dálmata está relacionado con su peso.

    Pesó diez dálmatas adultos y contó cuántas manchas tenían.

    Peso (kg)PuntosRango de PesoRango de manchasDiferencia entre rangosDiferencia2
    24.81136511
    22.214438-525
    19.3199110-981
    28.96592749
    26.01297700
    20.17823-11
    31.214510911
    23.5504139
    24.512356-11
    26.711084416
    Suma184

    A continuación, el zoólogo introdujo los datos en la ecuación

    p = 1 - (6 × 184) ÷ (12(122-1))

    p = 1 - (1104 ÷ 1716)

    Valor p calculado = 0,356

    Por último, el zoólogo halló el valor p crítico. Para esta prueba, el valor p crítico fue de 0 ,553. Como el valor p calculado era inferior al valor p crítico, no existe una correlación estadísticamente significativa entre las variables. El zoólogo aceptó la hipótesis nula.

    Datos estadísticamente significativos correlación dálmata StudySmarterFig. 2 - ¿Sabías que los dálmatas no nacen con sus manchas? Empiezan a desarrollarse alrededor de los 14 días de vida. Fuente: unsplash.com


    Espero que este artículo te haya aclarado los datos estadísticamente significativos. Un dato estadísticamente significativo es un resultado que es muy improbable que se haya producido por casualidad. Para determinar si tus datos son estadísticamente significativos, tienes que comparar tu valor calculado con el valor crítico (que depende del nivel de significación y de los grados de libertad).

    Datos estadísticamente significativos - Puntos clave

    • Estadísticamente datos significativos se refiere a los resultados de un experimento que es probable que se atribuyan a una causa específica.
    • Utilizamos pruebas estadísticas para encontrar asociaciones o diferencias en nuestros datos. Esto respalda nuestros resultados y nos ayuda a comprender mejor el mundo natural.
    • Al planificar un experimento, escribimos una hipótesis nula y una hipótesis alternativa. Si el resultado es estadísticamente significativo, se rechaza la hipótesis nula.
    • Al comprobar la significación, necesitamos utilizar niveles de significación (normalmente 0,05) y grados de libertad (n-1).
    • La varianza mide la diferencia entre dos conjuntos de datos, teniendo en cuenta la dispersión de los puntos de datos. Se utiliza una prueba F para ver si la varianza es estadísticamente significativa.
    • Una correlación comprueba si existe una asociación o relación entre dos variables. Se utiliza una prueba de rango de Spearman para ver si la correlación es estadísticamente significativa.

    1. Aloys Leo Prinz, Consumo de chocolate y premios Noble, Social Sciences & Humanities Open, 2020

    2. Harry Dean, ¿Los dálmatas nacen con manchas? La mayoría no lo sabe, The Puppy Mag, 2022

    3. Hill's, Información sobre la raza de perro dálmata y rasgos de personalidad, 2022

    4. Weather Spark, Clima y tiempo medio durante todo el año en Hull, 2022

    5. 5. Chispa del tiempo, clima y tiempo medio durante todo el año en Nottingham, 2022

    Preguntas frecuentes sobre Datos estadísticamente significativos
    ¿Qué significa datos estadísticamente significativos en estudios ambientales?
    Datos estadísticamente significativos en estudios ambientales son resultados que muestran una diferencia real no atribuible al azar, validando hipótesis sobre impacto ambiental.
    ¿Cómo se determina si los datos son estadísticamente significativos?
    Se determina mediante pruebas estadísticas que comparan resultados observados con un valor crítico, generalmente utilizando p-valores por debajo de 0.05.
    ¿Por qué es importante la significancia estadística en estudios de silvicultura?
    La significancia estadística en silvicultura asegura que las prácticas y estudios forestales se basan en datos confiables y no en variaciones aleatorias, esencial para decisiones de manejo.
    ¿Qué herramientas se utilizan para analizar la significancia estadística en estudios ambientales?
    Se utilizan herramientas como el ANOVA, pruebas t, Chi-cuadrado, y software estadístico especializado como SPSS o R.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    En una prueba de varianza, si el valor F crítico < el valor F calculado, ¿qué ocurre?

    En una prueba de rango de Spearman, si el valor p crítico = el valor p calculado, ¿qué ocurre?

    ¿La correlación siempre es igual a la causalidad?

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Ciencias Ambientales

    • Tiempo de lectura de 10 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.