Superficie equipotencial

Imagina que estás en una hoguera con tus amigos durante el invierno. Hace bastante calor junto al fuego, sin embargo, cuanto más lejos te sientas, menos calor te llega. Así que decides organizar los asientos cerca del fuego. Haces que todos se sienten a la misma distancia del fuego formando un círculo, de modo que todos sientan la misma temperatura.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

El campo eléctrico es siempre _____ hacia superficies equipotenciales.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Las superficies equipotenciales no se cruzan entre sí.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es la naturaleza de las superficies equipotenciales en el caso de una carga puntual positiva?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Uncampo eléctrico se dirige a lo largo de la tangente de una superficie equipotencial.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Se coloca una carga \(q\) sobre una superficie equipotencial, y el campo eléctrico en ese lugar es \(E\). ¿Cuál es el trabajo realizado sobre la carga si la desplazamos una distancia \(x\) sobre la superficie equipotencial?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál de las siguientes expresiones permite determinar la variación del potencial eléctrico entre dos puntos? Aquí \(E\) es el campo eléctrico, \(W\) es el trabajo realizado.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es la cantidad de trabajo realizado al girar una carga puntual \(q\) alrededor de una carga \(Q\) en un círculo de radio \(r\)?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un cubo metálico recibe una carga positiva \(Q\). ¿Cuál de las siguientes afirmaciones es válida para el sistema dado?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Considera un campo eléctrico uniforme en la dirección z. La dirección correcta de la superficie equipotencial es ____.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Las superficies equipotenciales están más cerca en la región de un campo eléctrico más bajo que en la región de un campo eléctrico más alto.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

El campo eléctrico es igual al negativo del gradiente de potencial eléctrico.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

El campo eléctrico es siempre _____ hacia superficies equipotenciales.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Las superficies equipotenciales no se cruzan entre sí.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es la naturaleza de las superficies equipotenciales en el caso de una carga puntual positiva?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Uncampo eléctrico se dirige a lo largo de la tangente de una superficie equipotencial.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Se coloca una carga \(q\) sobre una superficie equipotencial, y el campo eléctrico en ese lugar es \(E\). ¿Cuál es el trabajo realizado sobre la carga si la desplazamos una distancia \(x\) sobre la superficie equipotencial?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál de las siguientes expresiones permite determinar la variación del potencial eléctrico entre dos puntos? Aquí \(E\) es el campo eléctrico, \(W\) es el trabajo realizado.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es la cantidad de trabajo realizado al girar una carga puntual \(q\) alrededor de una carga \(Q\) en un círculo de radio \(r\)?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un cubo metálico recibe una carga positiva \(Q\). ¿Cuál de las siguientes afirmaciones es válida para el sistema dado?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Considera un campo eléctrico uniforme en la dirección z. La dirección correcta de la superficie equipotencial es ____.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Las superficies equipotenciales están más cerca en la región de un campo eléctrico más bajo que en la región de un campo eléctrico más alto.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

El campo eléctrico es igual al negativo del gradiente de potencial eléctrico.

Mostrar respuesta

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Superficie equipotencial?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Superficie Equipotencial Estudio de HoguerasSmarterFig. 1 - La figura muestra a personas sentadas en círculo alrededor de una hoguera para sentir el mismo calor.

    Ahora, sustituyamos el fuego por una carga, entonces todos los puntos de un círculo alrededor de la carga están al mismo potencial. En lugar del espacio bidimensional, elevemos la carga por encima del suelo, de modo que todos los puntos de la superficie de una esfera alrededor de esta carga estén a la misma distancia de la carga. En otras palabras, todos los puntos de la superficie de la esfera están al mismo potencial eléctrico. Esta superficie se denomina superficie equipotencial. En este artículo hablaremos de las superficies equipotenciales y sus propiedades, de un campo eléctrico en términos de gradiente de potencial eléctrico, del trabajo realizado sobre una superficie equipotencial y de cómo dibujar una superficie equipotencial en un mapa de líneas de campo eléctrico.

    Definición de superficie equipotencial

    En primer lugar, definamos qué es exactamente una superficie equipotencial.

    La superficie en la que todos los puntos tienen el mismo potencial eléctrico se llama superficie equipotencial.

    Antes de seguir explicándolo, es esencial conocer el potencial eléctrico y la diferencia de potencial eléctrico.

    El potencial eléctrico describe la energía potencial eléctrica por unidad de carga en un punto del espacio, donde la energía potencial eléctrica describe la cantidad de trabajo realizado sobre una carga para desplazarla hasta ese punto del espacio desde algún punto de referencia.

    Matemáticamente, el potencial eléctrico \(V\) puede expresarse como

    \[V=\frac{U_{\mathrm{E}}}{q},\]

    donde \(U_{mathrm{E}} es la energía potencial eléctrica, y \(q\) es la carga unitaria.

    Como el potencial eléctrico siempre se define en términos de algún punto de referencia elegido, el valor absoluto del potencial eléctrico carece de significado físico. Lo importante, sin embargo, es el cambio de potencial al moverse entre dos puntos. Por tanto, si consideramos una carga puntual que se mueve entre dos puntos, ahora consideramos la diferencia de potencial eléctrico \(\Delta V\) :

    \[\Delta V=\frac{\Delta U_{\mathrm{E}}}{q}].

    Teniendo todo esto en cuenta, ahora podemos utilizar los mapas vectoriales del campo eléctrico y las líneas equipotenciales para describir el campo producido por las cargas, y así predecir el movimiento de los objetos cargados dentro de dicho campo eléctrico.

    Superficie equipotencial y campo eléctrico

    Supongamos ahora que una carga eléctrica positiva \(q_\mathrm{a}\) se mueve desde un punto inicial a un potencial eléctrico \(V_1\) hasta un punto final a un potencial eléctrico \(V_2\) hacia otra carga positiva \(q_\mathrm{b}\).


    Diagrama de diferencia de potencial superficial equipotencial StudySmarterFig. 2 - Movimiento de una carga positiva \(q_\mathrm{a}\) hacia otra carga positiva \(q_\mathrm{b}\) del punto A al B contra una fuerza electrostática de repulsión.

    Sea \(W\) la cantidad de trabajo realizado por una fuerza electrostática de repulsión al mover \(q_\mathrm{a}\) de B a A. Utilizando todos los parámetros, la diferencia de potencial en el caso anterior es,

    \[V_2-V_1=-\frac{W}{q_a}\]

    o

    \[V_2-V_1=-\frac{F\,\left(r_1-r_2\right)}{q_a}\tag{1}\]

    Un campo eléctrico en términos de una fuerza eléctrica que actúa sobre una carga \(q_1\\) es,

    \[E=\frac{F}{q_1}\tag{2}\]

    A partir de las ecuaciones (1) y (2),

    \[\begin{align*} xml-ph-0000@deepl.internal V_2-V_1&=-\frac{E\,q_\mathrm{a}\,\left(r_1-r_2\right)}{q_\mathrm{a}}\\ xml-ph-0001@deepl.internal V_2-V_1&=-E\,\left(r_1-r_2\right) xml-ph-0002@deepl.internal \end{align*}\]

    Así pues, el cambio de potencial eléctrico entre dos puntos puede determinarse integrando el producto escalar del campo eléctrico con el desplazamiento a lo largo de la trayectoria que une los puntos

    \delta V = V_\mathrm{2}-V_\mathrm{1}= -\int_{a}^{b} \vec{E}\cdot \mathrm{d}\vec{r}. \]

    El campo eléctrico, por otra parte, puede hallarse utilizando\[E=-\frac{V_2-V_1}{r_1-r_2}.\]

    En el movimiento tridimensional de una carga eléctrica, la ecuación anterior puede escribirse como

    \[E=-\nabla V\tag{3}\]

    Esta ecuación muestra que el campo eléctrico es un gradiente de potencial eléctrico, lo que significa que apunta perpendicular a la superficie equipotencial.

    Las líneas equipotenciales representan líneas de igual potencial eléctrico. Este campo puede definirse en cualquier dirección en un lugar dado, por ejemplo, en la dirección \(x\) es así

    \[E_x=-\frac{\mathrm{d} V}{\mathrm{d}x}.\]

    Ejemplos de superficie equipotencial

    El ejemplo más adecuado para comprender las superficies equipotenciales es una distribución de carga en un conductor hueco cargado. Supongamos que suministramos carga a un conductor. La movilidad de una carga eléctrica es grande en el interior de un conductor. Debido a una fuerza electrostática de repulsión, las cargas eléctricas se distribuyen en la superficie de un conductor.

    Diagrama de superficie equipotencial que muestra la distribución de la carga eléctrica en el conductor StudySmarterFig. 3 - La figura muestra la distribución de la carga eléctrica en la superficie de un conductor hueco cargado, debido a su gran movilidad y a la fuerza electrostática de repulsión.

    Según la ley de Gauss, el campo eléctrico en el interior del conductor hueco cargado es

    \[E=\frac{Q}{\epsilon_0}\]

    donde \(Q\) es la carga neta encerrada en el conductor. El diagrama muestra que la carga neta dentro del conductor es cero debido a la distribución de cargas eléctricas en la superficie de un conductor.

    Por tanto, el campo eléctrico en el interior de un conductor es

    \[E=0\,\mathrm{N\,C^{-1}}\tag{4}\]

    A partir de las ecuaciones (3) y (4),

    \[\nabla V=0\]

    o

    \[V=\mathrm{constant}\]

    Esto indica que el potencial eléctrico permanece constante en el interior y en la superficie del conductor.

    El interior de un conductor hueco cargado con un valor constante de potencial eléctrico se denomina volumen equipotencial.

    La superficie de un conductor hueco cargado representa una superficie equipotencial. Del mismo modo, en el exterior del conductor, la superficie de esferas de distinto radio alrededor de los conductores representa superficies equipotenciales.

    Diagrama de superficie equipotencial que muestra las superficies equipotenciales alrededor del conductor StudySmarterFig. 4 - La figura muestra la superficie de esferas alrededor de un conductor como superficies equipotenciales.

    Líneas de campo eléctrico y superficie equipotencial

    Las líneas de campo eléctrico son uno de los métodos para representar gráficamente la dirección de un campo eléctrico alrededor de una carga eléctrica. La dirección de estas líneas de campo eléctrico es radialmente hacia fuera desde una carga positiva y radialmente hacia dentro hacia una carga negativa. La representación gráfica de estas líneas de campo eléctrico alrededor de una carga eléctrica se denomina mapa de campo eléctrico. El potencial eléctrico en un punto alrededor de una carga eléctrica en un espacio libre/vacío es

    \[V=\frac{1}{4\pi\epsilon_0}\frac{q}{r^2},\]

    donde \(\epsilon_0) es la permitividad eléctrica del espacio libre, \(q\) es una carga eléctrica alrededor de la cual se determina un potencial eléctrico, y \(r\) es la distancia del punto de prueba (donde se determina el valor de un potencial eléctrico) a una carga eléctrica.

    La ecuación anterior muestra que el potencial eléctrico varía con la distancia. Por tanto, si consideramos una esfera alrededor de una carga eléctrica, cada punto de la esfera está a la misma distancia de la carga eléctrica. En otras palabras, \(V\) es constante en la superficie de la esfera. Esta superficie se llama superficie equipotencial.

    La representación gráfica de esta superficie equipotencial en un mapa de campo eléctrico alrededor de una carga negativa \(-Q\) es la siguiente.

    Superficie equipotencial Diagrama que muestra la superficie equipotencial en un mapa de campo eléctrico StudySmarterFig. 5 - La figura muestra las superficies equipotenciales alrededor de la carga negativa en el mapa del campo eléctrico.

    El diagrama anterior muestra que la dirección de un campo eléctrico es perpendicular a la superficie equipotencial.

    Propiedades de las superficies equipotenciales

    En los apartados anteriores hemos estudiado en detalle las superficies equipotenciales. Conozcamos más a fondo algunas propiedades principales de estas superficies.

    1. Dos superficies equipotenciales nunca se cruzan (de lo contrario, en el punto de intersección habría dos vectores perpendiculares a ellas, por lo que habría dos campos eléctricos diferentes, lo cual es imposible).

    2. La dirección de un campo eléctrico es siempre perpendicular a una superficie equipotencial.

    3. Para una carga puntual, las superficies equipotenciales son esferas concéntricas.

    4. La superficie de un conductor hueco cargado es una superficie equipotencial.

    5. La cercanía de las superficies equipotenciales representa la mayor intensidad de un campo eléctrico en la región comprendida entre dichas superficies.

    Superficie equipotencial - Puntos clave

    • La superficie en la que todos los puntos tienen el mismo potencial eléctrico se denomina superficie equipotencial.
    • El potencial eléctrico describe la energía potencial eléctrica por unidad de carga en un punto del espacio.
    • Una superficie equipotencial es una superficie en la que la cantidad de trabajo realizado al mover una carga de un punto a otro es cero.
    • El campo eléctrico es un gradiente de un potencial eléctrico, es decir, \(E=-\nabla V\).
    • La dirección de un campo eléctrico es siempre perpendicular a una superficie equipotencial.
    • Para una carga puntual, las superficies equipotenciales son esferas concéntricas.
    • Dos superficies equipotenciales nunca se cruzan.
    • La proximidad de las superficies equipotenciales representa la mayor intensidad de un campo eléctrico en la región comprendida entre dichas superficies.

    Referencias

    1. Fig. 1 - Tocando los tambores en la hoguera, Sahara (https://unsplash.com/photos/1Ya-_vXJC8Q) de Tomáš Malík (https://unsplash.com/@malcoo) bajo licencia Unsplash (https://unsplash.com/license).
    2. Fig. 2 - Potencial eléctrico en un punto, StudySmarter Originals.
    3. Fig. 3 - Distribución de cargas eléctricas en un conductor, StudySmarter Originals.
    4. Fig. 4 - Superficies equipotenciales alrededor de un conductor, StudySmarter Originals.
    5. Fig. 5 - Superficies equipotenciales en el mapa del campo eléctrico, StudySmarter Originals.
    Preguntas frecuentes sobre Superficie equipotencial
    ¿Qué es una superficie equipotencial?
    Una superficie equipotencial es una superficie donde el potencial eléctrico es igual en todos sus puntos.
    ¿Cómo se representa una superficie equipotencial?
    Las superficies equipotenciales se representan como líneas que no se cruzan en un gráfico de campo eléctrico.
    ¿Qué relación hay entre superficies equipotenciales y líneas de campo eléctrico?
    Las superficies equipotenciales son perpendiculares a las líneas de campo eléctrico.
    ¿Para qué se utilizan las superficies equipotenciales?
    Se utilizan para visualizar campos eléctricos y comprender mejor la distribución del potencial eléctrico en un espacio.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    El campo eléctrico es siempre _____ hacia superficies equipotenciales.

    Las superficies equipotenciales no se cruzan entre sí.

    ¿Cuál es la naturaleza de las superficies equipotenciales en el caso de una carga puntual positiva?

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Física

    • Tiempo de lectura de 10 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.