Movimiento en Una Dimensión

El movimiento cotidiano puede llegar a ser bastante complicado. Vivimos en un mundo tridimensional con sistemas en movimiento que cambian e interactúan constantemente, lo que naturalmente puede resultar desalentador de aprender. Para empezar a hablar de cinemática, nos limitaremos a estudiar el tipo de movimiento más sencillo: el movimiento en una dimensión. En este artículo repasaremos la definición de movimiento en una dimensión, las fórmulas y variables importantes, el movimiento vertical de un proyectil y algunos ejemplos. ¡Manos a la obra!

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Movimiento en Una Dimensión?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Definición de movimiento en una dimensión

    Cuando decimos que un objeto está "en movimiento", queremos decir que su posición cambia con el tiempo. Para el movimiento unidimensional, esto significa que el objeto se mueve sólo en línea recta: piensa en viajar en línea recta a lo largo del eje x o y en una gráfica, o en una línea como \(x=2\). O imagina que vas en bici por un camino recto y llano, sin giros ni curvas.

    El movimientoen una dimensión se produce cuando la posición de un objeto cambia a lo largo de una línea recta.

    Movimiento en una dimensión Ir en bicicleta por un camino llano y recto sin girar es un cambio de posición unidimensional StudySmarterEl movimiento en una dimensión implica un cambio de posición en una sola coordenada espacial. Ir en bicicleta por un camino recto y llano es un ejemplo de movimiento en una dimensión, Robert Cramer vía Wikimedia Commons CC BY-SA 3.0

    Muchas de las cantidades que utilizamos en nuestro estudio del movimiento son cantidades vectoriales, por lo que debemos comprender la diferencia entre vectores y escalares antes de continuar.

    Un escalar es una cantidad que sólo tiene magnitud y ningún valor direccional.

    Un vector es una cantidad que tiene magnitud y dirección.

    La cinemática es el estudio del movimiento sin referencia a las fuerzas causales implicadas. El movimiento en una dimensión, implica situaciones como el desplazamiento a lo largo de una línea recta o la caída de un objeto después de dejarlo caer desde cierta altura. Hay un puñado de variables y fórmulas que necesitamos aprender para comprender el movimiento en una dimensión, así que vamos a sumergirnos en cada una de ellas a continuación.

    Fórmulas del movimiento en una dimensión

    Para describir el movimiento en una dimensión utilizamos las siguientes variables: posición,desplazamiento, distancia, rapidez, velocidad y aceleración. Te interesará conocer el significado de cada una de ellas, así como algunas definiciones importantes basadas en el cálculo para estas cantidades. Empecemos por las tres primeras variables de la lista.

    Posición, desplazamiento y distancia

    Saber describir dónde se encuentra un objeto en el espacio será esencial a lo largo de tu estudio de la física. La primera variable que utilizamos para comprender la ubicación es la posición.

    La posición es una cantidad vectorial que representa la ubicación espacial de un objeto medida en un sistema de coordenadas definido.

    Lo más frecuente es que utilices el plano de coordenadas cartesianas bidimensional para describir el movimiento en una y dos dimensiones. Para trazar la posición, las coordenadas \(x\) y \(y\) de una gráfica 2D representan la ubicación del objeto en el espacio.

    Movimiento en una dimensión 1D El movimiento es un cambio de posición a lo largo de una línea recta en el espacio de posición StudySmarterUtilizamos el sistema de coordenadas cartesianas bidimensional para trazar y analizar el movimiento tanto en una como en dos dimensiones, StudySmarter Originals

    En el gráfico anterior, la posición inicial de un objeto en movimiento es \((1,1)\) y la posición final es \((3,1)\). La flecha dibujada entre las posiciones inicial y final es el desplazamiento del objeto.

    El desplazamiento es una magnitud vectorial que mide el cambio de posición respecto a su posición inicial. Calculamos el desplazamiento mediante la siguiente fórmula

    $$ \Delta x = x_f -x_0, $$

    donde \(x\) es la variable de posición y \(x_0\) es la posición inicial.

    El \(\Delta x\) se lee en voz alta como "el cambio en x" o "delta x". En nuestra gráfica de ejemplo anterior, el desplazamiento es de \(\Delta x = (3-1) = 2\) unidades de longitud. Por tanto, si las unidades de longitud fueran metros, el desplazamiento total del objeto en movimiento es de \(2\) metros. Te preguntarás, ¿qué relación tiene esto con la distancia recorrida, no son lo mismo? La respuesta es ¡no!

    La distancia es una cantidad escalar que mide la longitud total recorrida con referencia a la posición inicial.

    Medimos tanto el desplazamiento como la distancia en unidades de longitud, normalmente metros, o \(\mathrm{m}\). La dirección de desplazamiento es muy importante para el desplazamiento, ¡así que presta atención al calcular! El desplazamiento de un objeto puede ser cero si terminamos en el mismo lugar donde empezamos, pero la distancia total siempre será distinta de cero si nos hemos movido algo. En nuestro gráfico, la distancia recorrida es la misma que el desplazamiento aquí. Sin embargo, si el objeto volviera a su posición inicial, entonces el desplazamiento sería cero con una distancia total recorrida de \(4\) unidades.

    Velocidad y rapidez

    Las dos siguientes magnitudes que utilizamos para el movimiento en una dimensión son la rapidez y la velocidad.

    La velocidad es una cantidad escalar que mide la variación de la distancia en un intervalo de tiempo. Matemáticamente, definimos la velocidad como

    $$ s=frac{d}{t}, $$

    donde \(d\) es la distancia total recorrida y \(t\) es el tiempo transcurrido.

    De forma similar a la diferencia entre distancia y desplazamiento, la distinción clave entre rapidez y velocidad es que la velocidad es una cantidad vectorial, mientras que la rapidez no lo es.

    La velocidad es una cantidad vectorial que mide el índice de cambio de desplazamiento sobre el cambio en el tiempo. Matemáticamente, definimos la velocidad en la dirección x como

    $$ v_x = \frac{\mathrm{d}}{\mathrm{d}t}(x\left(t\right)\right), $$

    la primera derivada de la función de posición respecto al tiempo.

    Medimos tanto la rapidez como la velocidad en unidades de longitud por tiempo, normalmente metros por segundo, o \(\frac{\mathrm{m}}{\mathrm{s}}). Diferenciando la tasa de cambio de posición de un objeto en movimiento con respecto al tiempo obtendremos la velocidad instantánea, o la velocidad medida en un momento concreto del tiempo:

    $$ v_{x,(\mathrm{inst})} = \frac{\mathrm{d}x}{\mathrm{d}t}. $$

    Si, en cambio, queremos hallar la velocidad media, podemos utilizar la siguiente fórmula:

    $$ v_{x,(\mathrm{avg})} = \frac{x_f-x_0}{t_f-t_0} = \frac{\Delta x}{\Delta t}, $$

    donde \(\Delta x\) es el cambio de posición y \(\Delta t\) es el cambio de tiempo. Esta fórmula es útil si te dan los valores numéricos de las posiciones inicial y final y del tiempo.

    Otra forma de escribir la fórmula matemática de la velocidad es

    \bin{align*} v\left(t\right) &= \ x'\left(t\right) \\ x\left(t\right) &= \int{v(t)\mathrm{d}t}. \fin{align*}

    En palabras, esto significa que la primera derivada de la función de posición de un objeto da la función de velocidad, y la integral de la función de velocidad da la función de posición. Ambas operaciones se realizan con respecto al tiempo. Utilizarás estas relaciones para determinar una función dada la otra.

    Aceleración

    Definimos la aceleración de un objeto en movimiento en una dimensión como sigue.

    La aceleración es una magnitud vectorial que mide el índice de variación de la velocidad en el tiempo. Matemáticamente, definimos la aceleración como

    \a_x &= \frac{mathrm{d}}{mathrm{d}t}v_x(t) \frac{mathrm{d}^2}{mathrm{d}t^2}x(t), \end{align*}.

    la primera derivada de la función velocidad respecto al tiempo, y la segunda derivada de la función posición respecto al tiempo.

    Medimos la aceleración en unidades de longitud por unidad cuadrada de tiempo, normalmente metros por segundo al cuadrado, o \frac(\frac{mathrm{m}}{mathrm{s}^2}). En pocas palabras, la aceleración es un cambio de velocidad. Este cambio de velocidad puede ser una aceleración o una ralentización, o también un cambio de dirección. La aceleración instantánea, o aceleración en un momento concreto del tiempo, es

    $$ a_{x,(\mathrm{inst})} = \frac{\mathrm{d}v}{\mathrm{d}t.} $$

    Para hallar la aceleración media durante un periodo de tiempo, utilizamos la fórmula

    $$ a_{x,(\mathrm{avg})} = \frac{v_f-v_0}{t_f-t_0} = \frac{\Delta v}{\Delta t}, $$

    donde \(\Delta v\) es el cambio de velocidad. Por último, podemos escribir de nuevo esta relación entre las funciones de posición, velocidad y aceleración de forma diferente utilizando el cálculo:

    \begin{align*} a(t) &= v'(t) = x''(t) \t(t) &= \int{a(t)\mathrm{d}t} \\ x(t) &= \int{v(t)\mathrm{d}t} = \iint{a(t)\mathrm{d}t}. \fin{align*}

    En palabras, esto dice que la función velocidad es la integral de la función aceleración, y la función posición es la integral doble de la función aceleración.

    Descripción del movimiento y la cinemática en una dimensión

    Aparte de las variables que acabamos de introducir, una de las herramientas más importantes para describir el movimiento y la cinemática unidimensionales son las gráficas. Algunos de los gráficos que tendrás que entender tanto cómo interpretar como crear son:

    • Gráficas de posición-tiempo, que muestran la distancia recorrida en el tiempo desde el punto de partida.

    • Gráficas de velocidad-tiempo, que muestran los cambios de velocidad a lo largo del tiempo.

    • Gráficas de aceleración-tiempo, que muestran los cambios en la aceleración a lo largo del tiempo.

    Veamos brevemente cada uno de estos tres tipos de gráficos.

    Una gráfica posición-tiempo representa la posición \(x\) en el eje vertical y el tiempo \(t\) en el eje horizontal.

    El movimiento en una dimensión El gráfico posición-tiempo representa la distancia recorrida en el tiempo con el valor de la pendiente que da la velocidad StudySmarter

    Si comparamos la posición con el tiempo, obtenemos la distancia recorrida. También podemos determinar la velocidad hallando la pendiente de la curva, StudySmarter Originals

    En este gráfico, la magnitud del vector de posición nos dará la distancia recorrida:

    $$ \Delta x = 3-0 = 3\,\mathrm{m}. $$

    La pendiente de una gráfica posición-tiempo en un punto dado nos dará el valor de la velocidad en ese punto. Cuando la pendiente es cero, la velocidad también será cero. La pendiente de esta recta es simplemente igual a \(1\), por lo que la velocidad aquí es \(1\,\frac{\mathrm{m}}{\mathrm{s}}).

    A continuación, veamos un gráfico de velocidad-tiempo.

    Una gráfica velocidad-tiempo representa la velocidad en el eje vertical y el tiempo en el eje horizontal.

    Movimiento en una dimensión Los gráficos de velocidad-tiempo muestran los cambios de velocidad en el tiempo con un valor de pendiente que representa la aceleraciónEl trazado de la velocidad en función del tiempo muestra los aumentos y disminuciones de la velocidad.También podemos determinar la aceleración en cualquier punto hallando la pendiente de una recta tangente en ese punto, StudySmarter Originals

    El área bajo las gráficas velocidad-tiempo nos dará el desplazamiento del objeto en movimiento. En esta gráfica, si calculamos el área del rectángulo sombreado en amarillo, hallaremos el desplazamiento ocurrido entre los tiempos \(t_1\) y \(t_2\). Si hallamos la pendiente de un punto a lo largo de la curva, obtendremos la aceleración en ese momento.

    Ahora bien, ¿qué ocurre con la aceleración antes, durante y después del tiempo \(t_1\)? En el gráfico anterior, hay treslíneas tangentes cerca de la región de máxima velocidad. Estas rectas tienen una pendiente equivalente a la curva en ese punto. Justo antes del tiempo \(t_1\), la pendiente de la recta tangente es negativa, lo que indica una deceleración del objeto y, por tanto, una velocidad decreciente.

    Por último, examinemos una gráfica de aceleración-tiempo.

    Una gráfica de aceleración-tiempo representa la aceleración en el eje vertical y el tiempo en el eje horizontal.

    Movimiento en una dimensión Las gráficas de aceleración-tiempo representan los cambios de aceleración en el tiempo StudySmarter

    La aceleración trazada en función del tiempo muestra si la aceleración es cambiante o constante. El área bajo la curva representa el cambio de velocidad, StudySmarter Originals

    El área bajo las gráficas de aceleración-tiempo dará el cambio en la velocidad \(\Delta v\) de un objeto en movimiento durante el intervalo de tiempo cubierto en la gráfica. En este gráfico, el objeto en movimiento en cuestión tiene una aceleración constante de \(1,\frac{\mathrm{m}}{\mathrm{s}^2}). Por ahora, es probable que no utilices tanto estas gráficas, pero sigue siendo beneficioso saber a qué atenerse.

    Quizá te preguntes qué medimos con las gráficas de aceleración-tiempo. La velocidad de cambio de la aceleración es otra variable del movimiento llamada sacudida. La sacudida se define matemáticamente como

    $$ \mathrm{jerk} = \frac{\Delta a}{\Delta t}, $$

    donde \(\Delta a\) es el cambio en la aceleración. En una gráfica aceleración-tiempo, la pendiente de la curva da el valor de la sacudida en un punto concreto del tiempo. Si el nombre de esta variable te parece extraño, piensa en ella como el tipo de movimiento brusco que se produce cuando cambias repentinamente de aceleración, como al frenar de golpe un coche en marcha.

    Las gráficas del movimiento en una dimensión, junto con algo de cálculo, son poderosas ayudas para comprender todo tipo de movimientos. Ahora que hemos repasado las herramientas que necesitamos, veamos un tipo de problema habitual: el movimiento vertical de un proyectil en una dimensión.

    Movimiento vertical de proyectil en una dimensión

    Uno de los primeros tipos de problemas con los que te encontrarás es el movimiento de proyectil.

    El movimiento deproyectil es el movimiento de un objeto que se lanza al aire, acelerando sólo debido a la gravedad.

    El movimiento de proyectilvertical es el movimiento de un objeto lanzado hacia arriba, que sólo tiene una componente vertical en su velocidad.

    Movimiento en una dimensión Movimiento de proyectil vertical recibe velocidad inicial hacia arriba y acelera hacia abajo debido a la gravedad StudySmarterUn objeto lanzado directamente al aire acelerará hacia abajo debido a la gravedad, MikeRun vía Wikimedia Commons CC BY-SA 4.0

    En un problema de movimiento vertical de proyectil, lanzamos un objeto como una pelota al aire, partiendo de una posición vertical inicial de \(h_0\). Durante el lanzamiento, sólo damos al objeto una velocidad vertical inicial \(v_{x,0}\); la componente horizontal es cero. Tras el lanzamiento inicial, la bola alcanza una altura máxima antes de acelerar de nuevo hacia abajo debido a la gravedad. Esto es sólo una breve introducción; más adelante entraremos en los detalles del movimiento vertical de proyectiles en una dimensión.

    Ejemplos de movimiento en una dimensión

    Para terminar nuestra introducción al movimiento en una dimensión, veamos un ejemplo

    Un objeto se desplaza con la función de velocidad \(v(t) = 5,5\frac{\mathrm{m}}{\mathrm{s}^2} \cdot t+2\,\frac{\mathrm{m}}{\mathrm{s}} \). ¿Qué distancia recorre el objeto en medio minuto?

    Utilizaremos las unidades más comunes para la velocidad y la mediremos en unidades estándar de \(\frac{\mathrm{m}}{\mathrm{s}}. Recuerda la relación entre posición y velocidad:

    $$ x(t) = \int v(t) \mathrm{d}t. $$

    Queremos integrar la función velocidad en el intervalo de tiempo, partiendo de cero y terminando en \(30\) segundos.

    \begin{align*} x(t) &= \int_0^{30} \left(5.5\frac{\mathrm{m}}{\mathrm{s}^2} \(5,5frac {mathrm{m}} {mathrm{s}} derecha)\mathrm{d}t x(t) &= \frac{5,5frac {mathrm{m}} {mathrm{s}}^2} \cdot t^2}{2} + x(30,\mathrm{s}) &= \frac{5,5\frac{mathrm{s}} {\mathrm{s}^2} \cdot (30\,\mathrm{s})^2}{2} + 2frac {{mathrm{m}} {{mathrm{s}} {\cdot 30,\mathrm{s}} x(30,\mathrm{s}) &= 2475,\mathrm{m} +60\Nmathrm{s} \\ x(30\mathrm{s}) &= 2535\mathrm{m}end{align*}

    El objeto se desplaza \(2535,\mathrm{m}) sobre \(30,\mathrm{s}).

    Veamos un ejemplo más, esta vez utilizando la definición de velocidad del cálculo.

    Un objeto se mueve a lo largo del eje x con una ecuación de posición de \(x(t) = 4\frac{\mathrm{m}}{\mathrm{s}^2}{\cdot t^2-7\frac{\mathrm{m}}{\mathrm{s}}{\cdot t+3\mathrm{m}}). \cdot t+3\mathrm{m}\), con \(x\) medido en \(m)\). En el momento \(t=5\,\mathrm{s}), ¿cuál es la velocidad instantánea del objeto?

    Sabemos que la relación entre la velocidad y la posición de un objeto que experimenta un movimiento unidimensional es

    $$ v(t) = x'(t). $$

    En primer lugar, queremos tomar la segunda derivada de la función de posición dada anteriormente.

    \v(t) &= x'(t) v(t) &= \frac{{mathrm{d}}{mathrm{d}}t}left(4\frac{mathrm{m}}{mathrm{s}^2}\cdot t^2-7\frac{mathrm{m}}{mathrm{s}) \cdot t+3\mathrm{m} \derecha) v(t) &= 8\,\frac{\mathrm{m}}{\mathrm{s}^2} \cdot t-7\,\frac{\mathrm{m}}{\mathrm{s}}. \fin{align*}

    Por último, introducimos nuestro valor de \(t\) y resolvemos la velocidad:

    \v(5\,\mathrm{s}) &= 8\,\frac{\mathrm{m}}{\mathrm{s}^2}. \cdot (5\,\mathrm{s})-7\,\frac{\mathrm{m}}{\mathrm{s}} \\ v(5\,\mathrm{s}) &= 33\,\frac{\mathrm{m}}{mathrm{s}}.end{align*}

    En \(t=5,\mathrm{s}), la velocidad del objeto es igual a \(33,\frac{\mathrm{m}}{\mathrm{s}}.

    Ahora que has visto una introducción al movimiento en una dimensión, tu siguiente paso es aprender cinemática unidimensional, o el estudio del movimiento sin referencia a las fuerzas implicadas. Trataremos más fórmulas cinemáticas para el movimiento en una dimensión en el artículo Ecuaciones cinemáticas, ¡así que sigue leyendo!

    Movimiento en una dimensión - Puntos clave

    • El movimiento en una dimensión es el cambio de posición de un objeto a lo largo de una única dimensión espacial.
    • Podemos identificar si un objeto está en movimiento examinando sus cambios de posición y dirección, o velocidad, a lo largo de una trayectoria.
    • La posición es la cantidad vectorial que mide la posición espacial de un objeto, representada normalmente con un par de coordenadas.
    • El desplazamiento es la cantidad vectorial que mide el cambio de posición de un objeto respecto a su posición inicial, y se calcula mediante la fórmula \(\Delta x = x_f-x_0\).
    • La distancia es la cantidad escalar que mide la longitud total que recorre un objeto en un periodo de tiempo medido.
    • La velocidad es la cantidad escalar que mide la distancia recorrida en un periodo de tiempo y describe la rapidez con que se desplaza un objeto sin tener en cuenta la dirección, calculada mediante la fórmula \(s=\frac{d}{t}\).
    • La velocidad es la cantidad vectorial que mide el índice de cambio de posición con respecto al tiempo, o \(v_x = \frac{mathrm{d}x}{mathrm{d}t}).
    • La aceleración es la cantidad vectorial que mide el índice de cambio de la velocidad con respecto al tiempo, o \(a_x = \frac{mathrm{d}v}{mathrm{d}t}).
    Preguntas frecuentes sobre Movimiento en Una Dimensión
    ¿Qué es el movimiento en una dimensión?
    El movimiento en una dimensión ocurre cuando un objeto se desplaza en línea recta, ya sea hacia adelante o hacia atrás.
    ¿Cuál es la fórmula para calcular la velocidad?
    La velocidad se calcula dividiendo el desplazamiento por el tiempo: v = d/t.
    ¿Qué diferencia hay entre velocidad y rapidez?
    La velocidad incluye dirección, mientras que la rapidez es la magnitud del movimiento sin dirección específica.
    ¿Qué es la aceleración en una dimensión?
    La aceleración es el cambio de velocidad por unidad de tiempo en una línea recta.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    ¿Qué tipo de magnitudes son la distancia y el desplazamiento?

    ¿Qué tipo de magnitudes son la velocidad y la rapidez?

    La función de aceleración se define matemáticamente en cálculo como...

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Física

    • Tiempo de lectura de 18 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.