Velocidad media y aceleración

Es el final del verano y tus padres te proponen un último día de playa en familia. Mientras conduces, no prestas mucha atención mientras escuchas música y juegas con tu teléfono. Sin embargo, de repente notas que el coche empieza a ir más despacio. Cuando levantas la cabeza, ves por qué: el temido "tráfico". Ahora bien, puede que no te des cuenta, pero la acción que acaban de realizar tus padres es un ejemplo clásico de física, concretamente de los conceptos de velocidad media y aceleración media. Cuando pisas el freno, la velocidad de tu coche empieza a descender a lo largo de una cierta distancia, y el coche tiene ahora una aceleración debida al cambio de velocidad. Por tanto, dejemos que este artículo defina la velocidad y la aceleración medias, así como queexplique cómo se puede calcular la velocidad y la aceleración medias a partir de las ecuaciones cinemáticas que se nos hayan dado.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Velocidad media y aceleración?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Diferencia entre velocidad media y aceleración media

    La velocidad media y la aceleración media no son lo mismo. Aunque tanto la velocidad como la aceleración son vectores con magnitud y dirección, cada uno describe un aspecto diferente del movimiento. La velocidad media describe el cambio de posición de un objeto con respecto al tiempo, mientras que la aceleración media describe el cambio de velocidad de un objeto con respecto al tiempo. Además,un objeto se acelera si cambia la magnitud o la dirección de su velocidad.

    Las cantidades medias se refieren a cantidades que se calculan sólo teniendo en cuenta los valores inicial y final de esa cantidad.

    Definición de velocidad media y aceleración media

    Definiremos la velocidad media y la aceleración, y discutiremos sus fórmulas matemáticas correspondientes.

    Velocidad media

    La velocidad media es una cantidad vectorial que depende de la posición final e inicial de un objeto.

    La velocidad media es el cambio de posición de un objeto con respecto al tiempo.

    La fórmula matemática correspondiente a esta definición es $$v_{text{avg}}=\frac{\Delta{x}}{\Delta{t}}$$.

    donde \( \Delta{x} \ ) representa el cambio de posición y \ ( \Delta{t} \) representa el cambio de tiempo.

    La unidad SI para la velocidad es \( \mathrm{\frac{m}{s} \).

    También se puede calcular la velocidad media utilizando los valores inicial y final de la velocidad.

    $$v_{texto{avg}=\frac{v_o + v}{2}$$

    donde \( v_o \) es la velocidad inicial y \ ( v \) es la velocidad final.

    Esta ecuación se puede derivar de la ecuación cinemática de la distancia media de la siguiente manera:

    $$\begin{aligned}\Delta{x}=& \frac{v_o+v}{2}(t) \frac{\Delta{x}}{t}= & \frac{v_o+v}{2} \\ v_{\text{avg}}= & \frac{v_o+v}{2}. \\ fin{alineado}$$

    Observa en lo anterior que \ ( \frac{\Delta{x}}{t} \) es la definición de velocidad media.

    Ya que hemos definido la velocidad media y discutido dos fórmulas correspondientes que podemos utilizar para determinar su valor, vamos a resolver un ejemplo sencillo que nos ayude a entenderlo antes de seguir adelante.

    Para hacer ejercicio, un individuo camina \( 3200\,\mathrm{m} \) todos los días. Si tarda \( 650\,\mathrm{s} \) en completarlo, ¿cuál es la velocidad media del individuo?

    Velocidad y aceleración medias, Caminar, StudySmarterCaminar es un ejemplo de determinación de la velocidad media y la aceleración media.CC-iStock

    Basándonos en el problema, se nos da lo siguiente

    • desplazamiento
    • tiempo

    Como resultado, podemos identificar y utilizar la ecuación

    \( v_{{text{avg}}=\frac{\Delta{x}}{\Delta{t}}) para resolver este problema. Por tanto, nuestros cálculos son

    $$\begin{aligned}v_{\text{avg}} &=\frac{\Delta{x}}{\Delta{t}} \\ v_{\text{avg}}&=\frac{3200\,\mathrm{m}}{650\,\mathrm{s}} \\ v_{\text{avg}}&=4.92\,\mathrm{\frac{m}{s}}. \\\fin{alineado}$$

    La velocidad media del individuo es \( 4,92,\mathrm{\frac{m}{s}. \})

    Aceleración media

    La aceleración media es una cantidad vectorial que depende de las velocidades final e inicial de un objeto.

    Laaceleración media es el cambio de velocidad de un objeto con respecto al tiempo.

    La fórmula matemática correspondiente a esta definición varía en función de distintas magnitudes, como la velocidad y el tiempo o la velocidad y la distancia.

    Presentaremos la fórmula en otro apartado. Pero antes, discutiremos dos formas de calcular la velocidad media dadas unas variables cinemáticas.

    Cálculo de la velocidad media a partir de las variables aceleración y tiempo

    Arriba vimos que la definición de velocidad media no depende de los valores intermedios de la velocidad a lo largo de un intervalo de tiempo. Esto significa que sólo necesitamos los valores de la velocidad inicial y final de un objeto si queremos calcular su velocidad media. Pero, ¿qué ocurre si, en lugar de conocer la velocidad inicial y final, sólo conocemos la velocidad inicial y la aceleración? ¿Podemos seguir determinando la velocidad media? ¡Sí! Pero, para ello, tenemos que utilizar las ecuaciones cinemáticas.

    ¿Qué es la cinemática? Bien, la cinemática es un campo de la física que se centra en el movimiento de un objeto sin referencia a las fuerzas que lo causan. El estudio de la cinemática se centra en cuatro variables: velocidad, aceleración, desplazamiento y tiempo. Observa que la velocidad, la aceleración y el desplazamiento son todos vectores, lo que significa que tienen magnitud y dirección. Por tanto, la relación entre estas variables se describe mediante las tres ecuaciones cinemáticas.

    Estas son la ecuación cinemática lineal

    $$v=v_o + at;$$

    la ecuación cinemática cuadrática,

    $$\Delta{x}=v_o{t} + \frac{1}{2}at^2;$$

    y la ecuación cinemática independiente del tiempo,

    $$v^2= {v_o}^2 + 2a\Delta{x}.$$

    Aquí \( v \) es la velocidad final, \ ( v_o \) es la velocidad inicial, \ ( a \) es la aceleración, \ ( t \) es el tiempo, y \( \Delta{x} \) es el desplazamiento.

    Estas ecuaciones cinemáticas sólo se aplican cuando la aceleración es constante.

    Para calcular la velocidad media a partir de la aceleración y el tiempo, partimos de la ecuación cinemática cuadrática:

    $$\begin{aligned}\Delta{x}&=v_o{t} + \frac{1}{2}at^2 \frac{1}{2}at)\frac{{1}{x}&= t(v_o + \frac{1}{2}at)\frac{1}{x}{t}&=v_o + \frac{1}{2}at \v_{texto{avg}&= v_o + \frac{1}{2}at.\final{alineado}$$

    Por tanto, laecuación \( v_{{text{avg}}= v_o + \frac{1}{2}en \) puede determinar la velocidad media. Yendo un paso más allá, podemos introducir la definición de aceleración, \( {a=\frac{\Delta{v}}{t} \), y volver a obtener la ecuación de la velocidad media, que sólo incluye sus cantidades inicial y final.

    $$\begin{aligned}v_{text{avg}}&= v_o + \frac{1}{2}at \ v_{text{avg}}&= v_o + \frac{1}{2}{\frac{Delta{v}}t} v_{text{avg}}&= v_o + \frac{1}{2}{Delta{v}}t= v_o + \frac{1}{2}{Delta{v} \frac{1}{2}{2}{v_texto{avg}&= \frac{2}{v_o + (v-v_o)}{2}{v_texto{avg}&= \frac{v_o + v}{2}{v_texto{avg}&= \frac{1}{2}{izquierda(v_o + v\derecha)}.\\\fin{alineado}$$

    Con esto hemos comprobado que, efectivamente, la velocidad media sólo depende de la velocidad inicial y final. Veamos ahora cómo podemos calcular la velocidad media a partir de una representación gráfica.

    Cálculo de la velocidad media a partir de una gráfica aceleración-tiempo

    Otra forma de calcular la velocidad media es mediante una gráfica de aceleración-tiempo. Al observar una gráfica de aceleración-tiempo, puedes determinar la velocidad del objeto, ya que el área bajo la curva de aceleración es el cambio de velocidad.

    $$\text{Área}=\Delta{v}.$$

    Por ejemplo, la gráfica de aceleración-tiempo que aparece a continuación representa la función, \( a(t)=0,5t+5 \). Utilizándola, podemos demostrar que el cambio de velocidad corresponde al área bajo la curva.

    La función indica que a medida que el tiempo aumenta en un segundo, la aceleración aumenta en \( 0,5\,\mathrm{\frac{m}{s^2}\}).

    Velocidad y aceleración medias,Gráfico aceleración-tiempo,StudySmarterFig. 1 Determinación de la velocidad media a partir de una gráfica aceleración-tiempo.

    Utilizando esta gráfica, podemos averiguar cuál será la velocidad después de un tiempo determinado, entendiendo que la velocidad es la integral de la aceleración

    $$v=\int_{t_1}^{t_2}a(t)$$

    donde la integral de la aceleración es el área bajo la curva y representa el cambio de velocidad. Por tanto

    v&=int_{t_1=0}^{t_2=5}(0,5t +5)dt\ v&=frac{0.5t^2}{2}+5t \\v&=\left(\frac{0.5(5)^2}{2}+5(5))-(\frac{0.5(0)^2}{2}+5(0)\right)\\v&=31.25\,\mathrm{\frac{m}{s}}.\\\end{aligned}$$

    Podemos comprobar este resultado calculando el área de dos formas distintas (un triángulo y un rectángulo), como muestra la primera figura.

    Empieza calculando el área del rectángulo azul:

    $$\begin{aligned}\text{Area}&=(\text{height})(\text{width})=hw \\\text{Area}&=(5)(5)\\ \text{Area}&=25.\\\end{aligned}$$

    Calcula ahora el área del triángulo verde:

    $$\begin{aligned}\text{Area}&=\frac{1}{2}\left(\text{base}\right)\left(\text{height}\right)=\frac{1}{2}bh \\\text{Area}&=\frac{1}{2}\left(5\right)\left(2.5\right)\\ \text{Area}&=6.25.\\\end{aligned}$$

    Ahora, sumando estas dos, obtenemos el resultado del área bajo la curva:

    $$\begin{aligned}\text{Area}_{\text{(curve)}}&=\text{Area}_{(\text{rec})}+ \text{Area}_{(\text{tri})} \text{Area}_{(\text{curva})}&= 25 + 6,25 \text{Area}_{(\text{curva})}&=31,25.\nd{aligned}$$

    Los valores coinciden claramente, lo que demuestra que en la gráfica aceleración-tiempo, el área bajo la curva representa el cambio de velocidad.

    Cálculo de la aceleración media dada la velocidad y el tiempo

    Para calcular la aceleración media a una velocidad y un tiempo dados, la fórmula matemática adecuada para empezar es

    $$a_{avg}=\frac{\Delta{v}}{\Delta{t}}$$

    donde \( \Delta{v} \) representa el cambio de velocidad y \ ( \Delta{t} \) representa el cambio de tiempo.

    La unidad SI para la aceleración es \( \mathrm{\frac{m}{s^2}}.

    El siguiente ejemplo nos pide que utilicemos la ecuación anterior para hallar una respuesta numérica.

    La velocidad de un coche aumenta de \( 20\, \mathrm{\frac{m}{s} ) a \ ( 90\,\mathrm{\frac{m}{s}) en un lapso de \( 16\,\mathrm{s}). ¿Cuál es la aceleración media del coche?

    Velocidad y aceleración medias, coche en movimiento, StudySmarterUn coche en movimiento mostrando la velocidad media y la aceleración media.CC-Science4fun

    Basándonos en el problema, se nos da lo siguiente

    • velocidad inicial
    • velocidad final
    • tiempo

    Como resultado, podemos identificar y utilizar la ecuación, \( a_{{text{avg}}=\frac{\Delta{v}}{\Delta{t}} \) para resolver este problema. Por tanto, nuestros cálculos son

    $$\begin{aligned}a_{\text{avg}}&=\frac{\Delta{v}}{\Delta{t}} \\a_{\text{avg}}&=\frac{90\,\mathrm{\frac{m}{s}}-20\,\mathrm{\frac{m}{s}}}{16\,\mathrm{s}}\\ a_{\text{avg}}&=\frac{70\,\mathrm{\frac{m}{s}}}{16\,\mathrm{s}}\\a_{\text{avg}}&= 4.375\,\mathrm{\frac{m}{s^2}}.\\\end{aligned}$$

    La aceleración media del coche es \( 4,375,\mathrm{frac{m}{s^2}. \)

    A continuación veremos cómo cambia el método para calcular la aceleración si nos han dado la distancia en lugar del tiempo.

    Cálculo de la aceleración media con la velocidad y la distancia

    Para calcular la aceleración media a partir de la velocidad y la distancia, tenemos que utilizar una vez más las ecuaciones cinemáticas. Mirando la lista anterior, observa que la primera y la segunda ecuaciones tienen una dependencia temporal explícita. Esto significa que tenemos que descartarlas y utilizar en su lugar la tercera ecuación.

    $$\begin{aligned}v^2&={v_o}^2+2a\Delta{x} \\v^2-{v_o}^2&=2a\Delta{x}\\ a&=\frac{v^2-{v_o}^2}{2\Delta{x}}.\\\end{aligned}$$

    Recuerda que las ecuaciones cinemáticas sólo son aplicables en caso de aceleración constante. Como la aceleración media en un intervalo de tiempo es constante, la ecuación \( a=\frac{v^2-{v_o}^2}{2\Delta{x}}\) nos permite calcular la aceleración media a partir de la velocidad y la distancia.

    Podemos comprobar que la ecuación derivada también es reducible a la definición de aceler ación media.

    $$\begin{aligned}a&=\frac{v^2-{v_o}^2}{2\Delta{x}} \\a&=\frac{v^2-{v_o}^2}{2\Delta{t}(v_{\text{avg}})}\\ a&=\frac{(v+v_o)-(v-v_o)}{2\Delta{t}(\frac{v_o +v}{2})}\\a&=\frac{(v-v_o)}{\Delta{t}}\\a&=\frac{\Delta{v}}{\Delta{t}}.\\\fin{alineado}$$

    Observa que \( v_{texto{avg}}=\frac{\Delta{x}}{\Delta{t}}\frac{\Delta{x}}).

    Ahora, en la derivación anterior, encontramos una expresión para la aceleración dada la velocidad y la distancia. Tomamos la tercera ecuación cinemática como punto de partida y aislamos en el lado izquierdo la cantidad que queríamos. También podríamos haber manipulado la misma ecuación para resolver otra cantidad.

    El ejemplo siguiente ilustra este punto. En él, te dan la aceleración y la distancia y te piden que resuelvas la velocidad final.

    Una pelota, lanzada desde un edificio, viaja \( 23\,\mathrm{m} \) hasta el suelo bajo la fuerza de la gravedad. ¿Cuál es la velocidad media de la pelota?

    Velocidad y aceleración medias, lanzamiento de pelotas, StudySmarterDejar caer una pelota para demostrar la velocidad media y la aceleración media.CC-Chegg

    A partir del problema, se nos da lo siguiente:

    • desplazamiento
    • aceleración

    Como resultado, podemos identificar y utilizar la ecuación, \( v^2={v_o}^2 +2g\Delta{x} \) para resolver este problema. Por tanto, nuestros cálculos son

    $$\begin{aligned}v^2&={v_o}^2+2g\Delta{x} \\v^2-{v_o}^2&=2g\Delta{x}\\ a\Delta{v}&=\sqrt{2g\Delta{x}}\\\Delta{v}&=\sqrt{2(9.81\,\mathrm{\frac{m}{s^2}})(23\,\mathrm{m})}\\\Delta{v}&= 21.24\,\mathrm{\frac{m}{s}}.\\\end{aligned}$$

    La velocidad media de la bola es \( 21,24,\mathrm{\frac{m}{s}).

    Velocidad cero y aceleración media no nula

    ¿Es posible tener una velocidad cero y una aceleración media distinta de cero? La respuesta a esta pregunta es sí. Imagina que lanzas una pelota directamente al aire. Debido a la gravedad, la pelota tendrá una aceleración constante distinta de cero durante todo su vuelo. Sin embargo, cuando la pelota alcance el punto vertical más alto de su trayectoria, su velocidad será momentáneamente cero. La figura siguiente lo ilustra.

    Velocidad Media y Aceleración, Velocidad Cero-Aceleración Cero-Bola que cae, StudySmarterDiagrama que muestra la velocidad cero y la aceleración distinta de cero.CC-Mathsgee

    Velocidad media y aceleración - Puntos clave

    • La velocidad media se define como el cambio de posición de un objeto con respecto al tiempo.
    • La velocidad media puede calcularse de tres formas: mediante las fórmulas \(\ v_{\text{avg}=\frac{\Delta{x}}{\Delta{t}) o \( v_{\text{avg}= v_o + \frac{1}{2}en \) , así como mediante el uso de una gráfica de aceleración-tiempo en la que el área bajo la curva de aceleración es representativa del cambio de velocidad.
    • La aceleración media se define como el cambio de velocidad de un objeto con respecto al tiempo.
    • La aceleración media puede calcularse de dos formas: con las fórmulas \( a_{{text{avg}}=\frac{\Delta{v}}{\Delta{t}} \) o \( a=\frac{\v^2-{v_o}^2}{2\Delta{x}} \).
    • La velocidad media y la aceleración media no son lo mismo, ya que una describe el cambio de posición de un objeto con respecto al tiempo, mientras que la otra describe el cambio de velocidad de un objeto con respecto al tiempo.
    • Es posible que un objeto tenga una velocidad cero y una aceleración media distinta de cero.
    Preguntas frecuentes sobre Velocidad media y aceleración
    ¿Qué es la velocidad media?
    La velocidad media es la distancia total recorrida dividida entre el tiempo total empleado.
    ¿Cómo se calcula la velocidad media?
    Para calcular la velocidad media, divide la distancia recorrida entre el tiempo total empleado.
    ¿Qué es la aceleración?
    La aceleración es la tasa de cambio de la velocidad de un objeto con respecto al tiempo.
    ¿Cómo se calcula la aceleración?
    Para calcular la aceleración, divide el cambio de velocidad entre el tiempo utilizado para ese cambio.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    Completa la definición:La aceleración media es ...

    Completa la definición:La velocidad media es ...

    En una gráfica de aceleración-tiempo, el área bajo la curva ¿representa cuál de las siguientes?

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Física

    • Tiempo de lectura de 15 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.