Saltar a un capítulo clave
Las células solares que utilizamos hoy en día para obtener electricidad de los rayos solares es una de las aplicaciones modernas más significativas de la mecánica cuántica en cuanto a sus efectos e implicaciones para la sociedad en general. El efecto fotoeléctrico, la radiación del cuerpo negro, el experimento de la doble rendija y el modelo atómico de Bohr son fenómenos famosos que se explican con la mecánica cuántica. Sin la mecánica cuántica, las observaciones macroscópicas son fáciles de predecir, pero el mundo microscópico se vuelve misterioso. Quizá te preguntes, si la energía se veía casi como continua a nivel macroscópico, ¿cómo descubrieron los científicos la cuantización de la energía? ¡La respuesta a esta pregunta se explora en este artículo!
Definición de cuantización de la energía
En primer lugar, ¡definamos qué es exactamente la cuantización de la energía!
El fenómeno en el que la cantidad de energía emitida o absorbida por un cuerpo es un múltiplo integral de una cantidad constante se denomina cuantización de la energía.
Estos paquetes discretos de energía se conocen como cuantos. Para explicar el efecto fotoeléctrico, la energía absorbida por la superficie metálica del rayo incidente se modela como si estuviera formada por cuantos. El efecto fotoeléctrico es, por tanto, una demostración de la cuantización de la energía.
Planck define la cuantización de la energía en términos de cuantización de las ondas electromagnéticas.
Fórmula de cuantificación de la energía
La mecánica cuántica describe las ondas electromagnéticas como un conjunto de pequeños paquetes de energía denominados fotones. La energía de cada uno de estos fotones en función de la frecuencia de la onda es \[E=h\nu,\].
donde \(h=6,626 veces 10^{-34},\mathrm{J,s},\left(\mathrm{joule,segundo}\right)\) es la constante de Planck, y \(\nu\) es la frecuencia de la onda.
¡Esta ecuación muestra que la energía de cada fotón aumenta al aumentar la frecuencia de la onda!
La frecuencia de las luces visibles varía de la siguiente manera: \nu_{mathrm{violeta}} > \nu_{mathrm{índigo}} > \nu_{mathrm{azul}} > \nu_{mathrm{verde}} > \nu_{mathrm{amarillo}} > \nu_{mathrm{naranja}} > \nu_{mathrm{rojo}}. De la relación entre la energía de cada cuanto de onda en función de la frecuencia, se deduce que la energía varía como sigue: [E_{mathrm{violeta}} > E_{mathrm{índigo}} > E_{mathrm{azul}} > E_{mathrm{verde}} > E_{mathrm{amarillo}} > E_{mathrm{naranja}} > E_{mathrm{rojo}}.
La velocidad de una onda electromagnética en el vacío es \(c=3veces10^{8},\mathrm{m\,s^{-1}}). La relación entre la velocidad \(\left(c\right)\), la longitud de onda \(\left(\lambda\right)\) y la frecuencia \(\left(\nu\right)\) del rayo es
\[c=\nu\lambda.\]
Utilizando esta relación, la energía de cada cuanto en función de la longitud de onda es
\[E=h\frac{c}{\lambda}.\]
La ecuación anterior describe la energía de cada fotón, pero las ondas electromagnéticas están formadas por muchos fotones. La cantidad de energía emitida o absorbida por el cuerpo debido a la incidencia de las ondas electromagnéticas sobre él es,
\[E=nh\nu,\\]
donde \(n\) es el número de fotones incidentes (enteros), es decir, \(n=\pm1,\pm2,\pm3,...\)
En otras palabras, la cantidad de energía absorbida o emitida tendrá la forma de \(E=\pm h\nu,\pm1h\nu,\pm2h\nu,...\) en lugar de la forma de \(E=\pm1,1h\nu,\pm1,2h\nu,\pm1,3h\nu,...\) o cualquier otro número real múltiplo de \(h\nu\).
Algunos ejemplos de cuantización de la energía son las vibraciones del arpa (sólo son posibles determinadas notas musicales), las olas de las lanchas rápidas (las olas que se forman son discretas en lugar de un continuo), etc.
Causa de la cuantización de la energía
La causa de la cuantización de la energía es la naturaleza ondulatoria de la materia. Con la naturaleza dual de la materia de De Broglie, Bohr explicó la revolución de los electrones alrededor del núcleo en forma de su naturaleza ondulatoria. Bohr postuló que los electrones sólo giran en la órbita en la que sus ondas interfieren constructivamente.
El modelo de Bohr es el modelo atómico estructural en el que los electrones giran alrededor del núcleo en distintas órbitas circulares (o envolturas).
Antes de explicar la cuantización de la energía con el modelo de Bohr, necesitamos conocer los postulados del modelo de Bohr de los átomos.
- Los electrones giran alrededor del núcleo cargado positivamente en una órbita circular determinada.
- Cada órbita circular en la que gira el electrón tiene un valor de energía fijo.
- El número cuántico \(n=1,2,3,...\) denota la órbita circular donde \(n=1\) es el número cuántico de la órbita de menor energía (más cercana al núcleo). Un valor mayor del número cuántico representa órbitas de mayor energía (alejadas del núcleo).
- Un electrón en su estado de menor energía gira alrededor del núcleo sin perder energía. En otras palabras, el electrón es estable mientras gira alrededor del núcleo en un estado de energía inferior.
- Con la ganancia de energía necesaria, el electrón puede pasar de la órbita de menor energía a una órbita de mayor energía. Pero debido a la inestabilidad, vuelve a su estado inicial con la emisión de la misma cantidad de energía ganada.
En la figura anterior, sean \( n_\mathrm{i}\ ) y \ (n_\mathrm{f}\) una órbita de energía inicial y otra final del electrón. Entonces, la energía de la onda electromagnética emitida es \(\Delta E=\izquierda(n_{mathrm{f}}-n_{mathrm{i}}derecha)h\nu\). Sustituyendo los valores conocidos del número cuántico \(n_\mathrm{f}) y \(n_\mathrm{i}) en la ecuación, se obtiene\[\begin{align*}\Delta E&=\left(3-2\right)h\nu&=h\nu.\end{align*}]
Esto demuestra que la cantidad de energía emitida por el átomo está cuantizada. Así pues, el modelo de Bohr demuestra la cuantización de la energía.
Ejemplos de cuantización de la energía
Un importante ejemplo moderno de cuantización de la energía es la célula solar basada en un fenómeno bien conocido, el efecto fotoeléctrico. Empecemos por el efecto fotoeléctrico.
Cinco años después del descubrimiento de la cuantización de la energía por Planck, Albert Einstein explicó la misteriosa interacción de la luz y la materia llamada fenómeno fotoeléctrico descubierto por Heinrich Rudolf Hertz. Según Albert Einstein, un rayo de luz incidente sobre una superficie metálica se comporta como un conjunto de pequeños paquetes de energía llamados fotones. La energía de cada fotón equivale a la energía de cada cuanto, es decir, \(E=h\nu\), donde \(\nu\) es la frecuencia del rayo incidente.
Einstein postuló que cada electrón está ligado al metal con una energía característica asociada a esta ligadura denominada función de trabajo \(\left(E_\circ=h\nu_\circ\right)\). Por tanto, para eliminar el electrón de la superficie del metal, la frecuencia del rayo incidente debe ser igual o superior a la frecuencia umbral \(\left(\nu_\circ\right)\). La energía cinética máxima del electrón emitido en función de la frecuencia del rayo incidente es
\[E_\mathrm{max}=h\nu-h\nu_\circ.\]
Estos electrones emitidos se conocen como fotoelectrones.
Entonces, ¿cómo se utiliza este fenómeno en las células solares? En primer lugar, pensemos en lo que podemos hacer con el electrón emitido desde la superficie metálica. Si proporcionamos una diferencia de potencial en el montaje tal que todos los electrones emitidos empiecen a moverse de un punto a otro, esto puede generar una corriente eléctrica. Pues bien, los científicos utilizan un proceso similar en las células solares para generar electricidad a partir de los rayos solares.
Importancia de la cuantización de la energía
La cuantización de la energía explica muchos fenómenos que la mecánica clásica no puede explicar. A continuación se enumeran algunos de estos ejemplos.
Bohr explicó que las líneas discretas en el espectro de un átomo de hidrógeno se deben a la transición de los electrones entre órbitas de energía fija debido a la cuantización de la energía. La energía emitida por los electrones en el átomo de hidrógeno está cuantizada. Así, el espectro del hidrógeno consiste en líneas discretas en lugar de un continuo.
La cuantización de la energía explica el fenómeno fotoeléctrico, que no puede explicarse mediante la física clásica. Además, ayuda a determinar la energía cinética máxima de los electrones emitidos desde la superficie del metal.
La cuantización de la energía aporta pruebas de la dualidad onda-partícula; como el rayo incidente como un conjunto de fotones o la naturaleza ondulatoria de los electrones que giran alrededor del núcleo.
En conclusión, la cuantización de la energía arroja luz sobre varios fenómenos físicos que antes no podían explicarse mediante las teorías físicas clásicas.
Cuantización de la energía - Puntos clave
- El fenómeno en el que la cantidad de energía emitida o absorbida por un material o cuerpo es un múltiplo integral de los paquetes de energía se denomina cuantización de la energía.
- La energía de cada cuanto de radiación electromagnética es \(E=h\nu\), donde \(\nu\) es la frecuencia de la radiación electromagnética, y \(h=6,626\times 10^{-34}\,\mathrm{J,s}\).
- La causa de la cuantización de la energía es la naturaleza ondulatoria de la materia.
- Ejemplos de cuantización de la energía son las vibraciones del arpa, las olas de las lanchas rápidas, las células solares, etc.
- La cuantización de la energía explica muchos fenómenos, como el espectro de líneas discretas del hidrógeno, la dualidad onda-partícula, la radiación del cuerpo negro, la órbita estable alrededor del núcleo, etc., que la mecánica clásica no puede explicar.
Referencias
- Fig. 1 - Célula solar(https://unsplash.com/photos/XGAZzyLzn18) de American Public Power Association(https://unsplash.com/@publicpowerorg) bajo licencia Unsplash (https://unsplash.com/license).
- Fig. 2 - La figura muestra la naturaleza ondulatoria del electrón mientras gira alrededor del núcleo en el modelo de Bohr del átomo, StudySmarter Originals.
- Fig. 3 - La figura muestra la transición de un electrón de una órbita de mayor a menor energía con emisión de energía cuantizada en el modelo de Bohr del átomo, StudySmarter Originals.
- Fig. 4 - La figura muestra el efecto fotoeléctrico en el que se produce la emisión de electrones desde la superficie del metal cuando los fotones de suficiente energía inciden sobre la superficie del metal, StudySmarter Originals.
Aprende con 15 tarjetas de Cuantización de la energía en la aplicación StudySmarter gratis
¿Ya tienes una cuenta? Iniciar sesión
Preguntas frecuentes sobre Cuantización de la energía
Acerca de StudySmarter
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.
Aprende más