Esta idea fue propuesta por Louis de Broglie, cuando expuso los resultados de algunos experimentos en su tesis doctoral. Las ideas de De Broglie son similares a las de Albert Einstein; es decir, que la luz, que se suponía que era una onda, también podía describirse como una partícula con una energía fija llamada "quanta".
La dualidad onda-partícula de la luz
Hasta principios del siglo XX se consideraba que la luz se propagaba como ondas. Solo 25 años antes de que De Broglie descubriera que las partículas tenían un comportamiento ondulatorio, Einstein había estudiado el efecto fotoeléctrico, asumiendo que la luz estaba compuesta por un pequeño flujo de partículas con una energía igual a su frecuencia f y a la constante de Planck h. Esto revolucionó nuestra comprensión de la luz, ya que, desde entonces, también podía describirse como una partícula.
Los conceptos de que la luz tiene las propiedades tanto de una partícula como de una onda y de que las pequeñas partículas tienen las propiedades de la luz, condujeron a varios desarrollos importantes:
Thomas Young demostró que la luz es un fenómeno ondulatorio.
Albert Einstein propuso que la luz está compuesta por pequeñas partículas, denominadas cuantos.
Louis de Broglie desarrolló una teoría que explica que las pequeñas partículas presentan propiedades ondulatorias.
Clinton Davisson, Paget Thomson y Lester Germer realizaron experimentos sobre los patrones de difracción de los electrones.
Teoría cinético corpuscular
Al principio, se propuso que la luz estaba compuesta por pequeñas partículas que viajaban en el espacio. Esta teoría intentaba explicar la luz como partículas que se deslazaban a través de un medio que llenaba el universo y que se denominó como éter.
Sin embargo, la teoría corpuscular de la luz como objetos pequeños no era capaz de explicar todas las propiedades de la luz.
Por ejemplo, no daba razón de que las ondas reducían su velocidad y cambiaban su dirección al entrar en el agua si no viajaban a través de ella.
Un argumento importante contra la teoría corpuscular era esta incapacidad para explicar la difracción de la luz.
Fig. 1. La difracción de la luz no podía ser explicada por la teoría corpuscular. Durante la refracción de la luz, las partículas de luz entran en un pequeño hueco y deberían pasar como un solo rayo. Sin embargo, las partículas se dispersan, en un fenómeno conocido como difracción; al igual que las olas del mar pasan a través de una bahía.
Experimento de la doble rendija
Los experimentos realizados por el científico británico Thomas Young proporcionaron una nueva percepción de la luz. Los experimentos eran sencillos, pero también muy inteligentes.
Haciendo pasar un rayo de luz a través de una pequeña abertura en una serie de placas, Young observó patrones de comportamiento ondulatorio. Si la luz fuese una partícula, simplemente podría pasar y se mostraría sobre las rendijas abiertas. Sin embargo, si la luz fuese una onda, se extendería tras las rendijas, mostrando un patrón de interferencia. Young obtuvo un patrón de interferencia que confirmó, por tanto, que la luz se comportaba como una onda.
Fig. 2: El experimento de Thomas Young demostró los patrones de interferencia. La luz se comporta como una onda porque, tras pasar por las pequeñas aberturas, la difracción hace que algunas zonas (rojo) se amplifiquen y otras (verde) se anulen. Esto es similar al comportamiento de las olas del mar, donde dos crestas se amplifican mutuamente, mientras que una cresta y un valle se anulan.
La contribución de Albert Einstein
Einstein propuso que la luz está formada por pequeñas partículas y que su energía depende de su frecuencia. Sus ideas se desarrollaron en relación con sus trabajos sobre el efecto fotoeléctrico: se esperaba que una luz más intensa hiciera saltar más a los electrones, pero esto no ocurrió; solo cuando se aumentaba la frecuencia de la luz, los electrones saltaban de la placa metálica.
Por tanto, Einstein propuso que la energía de una partícula llamada quanta era la que impactaba en la placa metálica y que era esta la responsable de expulsar los electrones de la placa. La energía, en este caso, no dependía de la intensidad, sino de la frecuencia de la luz.
Hipótesis de De Broglie
Tras describir cómo se dispersan los electrones después de impactar en un cristal, de Broglie desarrolló una teoría en la que propuso que la luz se comporta como una onda y una partícula. Descubrió que la dispersión de los electrones presentaba un patrón ondulatorio y propuso una fórmula que relaciona la velocidad y la masa de las partículas con su longitud de onda.
Experimentos de difracción de electrones
Clinton Davisson, Paget Thomson y Lester Germer realizaron experimentos en los que dispararon electrones sobre un cristal. Los electrones no chocaron contra el cristal, sino que atravesaron el material, mostrando un patrón ondulatorio tras el impacto.
Estos experimentos de difracción realizados por Davisson y sus compañeros aportaron la confirmación final de que los electrones pueden comportarse como una onda.
Fig. 3 Difracción Los experimentos con haces de electrones confirmaron la dualidad onda-partícula:las partículas pasaron por dos rendijas y los impactos se registraron en una placa. Se encontró un patrón de interferencia, que demostró que los electrones pueden comportarse como ondas
Principio de dualidad onda-partícula
De Broglie concluyó que si los electrones podían comportarse como ondas, las partículas tenían una longitud de onda. Relacionó la energía de la longitud de onda de las partículas de luz con la energía de una partícula que se mueve con una determinada energía cinética. Esto nos dice que la energía del fotón debe ser la energía dada a la partícula para ponerla en movimiento.
Energía de un fotón o de una onda
En el caso de la luz, que puede verse como una onda electromagnética, su energía es inversamente proporcional a su longitud de onda, y son las longitudes de onda más pequeñas las que tienen mayores cantidades de energía. En el siguiente cálculo, λ es la longitud de onda del fotón en metros, mientras que h y c son la constante de Planck y la velocidad de la luz en el vacío, con los siguientes valores:
La energía de una partícula
Einstein estableció una relación entre la energía de una partícula y su masa m, expresada en kilogramos. E es la energía dada en julios, y c es la velocidad de la luz en el vacío:
Esto dice que la masa de una partícula en reposo tiene una equivalencia energética.
La relación longitud de onda-energía de la partícula
Podemos decir, simplemente, que las energías de una partícula y de un fotón son iguales:
La masa es m, la velocidad de la partícula es v, la longitud de onda del fotón que incide en la partícula es λ, y h y c son la constante de Planck y la velocidad de la luz en el vacío:
Para obtener la longitud de onda relacionada de la partícula, igualamos ambas fórmulas y resolvemos para la longitud de onda λ.
Simplificando esto, obtenemos:
Aquí se puede intercambiar c por v, que es la velocidad propia de la partícula en movimiento:
Esta longitud de onda se conoce como la longitud de onda de Broglie de una partícula.
Cálculo de la longitud de onda de un electrón en movimiento.
Tienes un electrón que se mueve a un 10% de la velocidad de la luz y quieres calcular su longitud de onda. Conoces la velocidad de la luz, la constante de Planck y la masa del electrón, que es aproximadamente 9,1 ⋅ 10-31 kg.
Al sumar todos los valores, obtienes:
Como ves, esta longitud de onda es muy pequeña y es inversamente proporcional al momento del electrón.
Dualidad onda-partícula - Puntos clave
- Las partículas y la luz tienen propiedades que hacen que se comporten como una onda y una partícula, al mismo tiempo.
- Las partículas tienen una longitud de onda asociada, conocida como longitud de onda de De Broglie.
- Un experimento importante que confirmó que la luz es una onda fue el experimento de la doble rendija diseñado por Thomas Young. Sin embargo, fue Einstein quien introdujo la idea de la luz como una pequeña partícula con una cantidad fija de energía.
- La dualidad onda-partícula fue descubierta experimentalmente por varios científicos, pero fue de Broglie quien introdujo el concepto de longitud de onda asociada a cada partícula.
- Las longitudes de onda de las partículas son inversamente proporcionales a sus energías y directamente proporcionales a su frecuencia.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel