Saltar a un capítulo clave
¿Qué es el potencial eléctrico?
El potencial eléctrico es una función escalar asociada al campo eléctrico, que se interpreta como la energía o trabajo que realiza el campo por unidad de carga.
La interpretación energética del potencial eléctrico surge de forma física, después de imponer la condición matemática de que el campo es conservativo. En lenguaje de cálculo diferencial, la condición de campo conservativo implica que la forma matemática del campo eléctrico es tal, que puede ser derivada de una cantidad escalar: el potencial (gracias a operaciones de cálculo diferencial.)
Si utilizamos la Ley de Coulomb, que describe el campo eléctrico generado por una carga eléctrica puntual, podemos calcular de forma sencilla el potencial eléctrico asociado y estudiar sus propiedades. Como veremos, dado que el potencial eléctrico es una magnitud energética asociada al campo eléctrico, el trabajo realizado por unidad de carga se mide siempre como una diferencia entre el punto de interés y un origen de potencial que solemos dejar fijo. Dado que (como en cualquier escala de energías) podemos elegir arbitrariamente este origen de potencial, haremos una elección especialmente simple —aunque podríamos hacer otra elección que complicase ligeramente el cáclulo matemático—.
Fórmula de potencial eléctrico y unidades
Antes de escribir la fórmula del potencial eléctrico, recordemos la ley de Coulomb y sus propiedades básicas. La fórmula es:
\[\vec{E_Q}=k\dfrac{Q}{r^2}\vec{e_r}\]
donde,
- \(Q\) es el valor de la carga eléctrica (cuya unidad en el SI es el Coulombio) que genera el campo.
- \(r\) es la distancia radial medida desde la misma (cuya unidad en el SI es el metro).
- \(\vec{e_r}\) es el vector unitario que sale radialmente desde la carga.
- \(k\) es una constante con un valor aproximado de \(9 \cdot 10^{9} \,\,\mathrm{Nm^2/C^2}\).
La constante de Coulomb se suele parametrizar, en términos de otra constante llamada \(\epsilon_0\) (llamada permitividad del vacío), de la siguiente forma:
\[k=\dfrac{1}{4\pi \epsilon_0}\]
lo cual implica que \(\epsilon_0\) tiene un valor aproximado de \(8,85\cdot 10^{-12}\,\,\mathrm{C^2/Nm^2}\).
Al aplicar que la fuerza ejercida sobre otra carga, por el campo eléctrico creado por la carga \(Q\), es igual a \(\vec{F}=q\cdot \vec{E_Q}\), da la expresión de la conocida fuerza de Coulomb. De acuerdo con la tercera ley de Newton, la fuerza ejercida por el campo generado por una carga sobre la otra es igual en magnitud (y de dirección opuesta) a la fuerza ejercida por el campo creado por la otra sobre la una.
El campo creado por una carga puntual tiene las siguientes características en lo referente a su orientación vectorial:
- El campo eléctrico se encuentra dirigido hacia la carga, si esta es negativa.
- El campo eléctrico sale desde la carga, si esta es positiva.
- La intensidad de campo eléctrico decae con la distancia desde la carga.
Entonces, podemos escribir el potencial eléctrico asociado a una carga puntual así:
\[V_Q=\dfrac{k\cdot Q}{r}-\dfrac{k\cdot Q}{r_0}=\dfrac{k\cdot Q}{r}+V_0\]
Donde
- \(V_0\) es el origen de potencial que ya hemos mencionado, asociado a una distancia radial arbitraria que denotamos por \(r_0\).
Sus características principales son las siguientes:
- El potencial eléctrico asociado a una carga puntual tiene una contribución no constante positiva, si la carga es positiva.
- El potencial eléctrico asociado a una carga puntual tiene una contribución no constante negativa, si la carga es negativa.
- Las unidades del potencial eléctrico son de Julio por Culombio (energía por unidad de carga), que recibe un nombre especial: el Voltio (V).
Puesto que la fuerza de Coulomb es lineal en la carga sobre la que se ejerce la fuerza, es claro ver que la energía o trabajo que ejerce el campo creado por la carga \(Q\) sobre la carga \(q\) es:
\[U=q\cdot V_Q=\dfrac{kqQ}{r}-\dfrac{kqQ}{r_0}=\dfrac{kqQ}{r}+U_0\]
Su signo depende tanto del origen de potencial como del signo relativo entre ambas cargas.
La elección simple para el origen de potencial que hemos comentado al principio es la siguiente: elegir el origen de potencial a una distancia radial infinita de la carga que produce el campo. Al hacer esto —puesto que el potencial tiene una dependencia inversa en la distancia radial—, la contribución del origen de potencial se vuelve nula al tomar \(r_0\) como infinita. Con esta elección, la definición del potencial eléctrico sería:
El potencial eléctrico es el trabajo por unidad de carga que realiza un campo eléctrico para traer una carga desde el infinito hasta un punto arbitrario.
El significado más profundo del potencial eléctrico reside en que el campo eléctrico se puede obtener del potencial eléctrico, al calcular la derivada (respecto del radio en el caso de la Ley de Coulomb) con un signo menos delante.
Matemáticamente, se puede generalizar este proceso para cualquier forma del campo y el potencial eléctrico, para obtener también el carácter vectorial a partir de la expresión escalar. Sin profundizar más en este aspecto, es claro por qué podemos elegir el origen de potencial donde queramos: al derivar con respecto a cualquier variable, su contribución será cero (porque es una constante) y obtendremos la misma expresión del campo eléctrico.
La forma matemática del potencial eléctrico nos permite encontrar la consistencia con la dirección del campo vectorial y la ley de Coulomb.
- Para un campo y potencial eléctricos generados por una carga positiva:
- Si se calcula el potencial eléctrico asociado a una carga de prueba negativa, se encuentra una contribución negativa, lo cual indica que el sistema nos devuelve energía; ya que la tendencia natural de las cargas de distinto signo es atraerse.
- Si se calcula el potencial eléctrico asociado a una carga de prueba positiva, la contribución es positiva; ya que tenemos que invertir energía para mover la carga, puesto que las cargas de igual signo se repelen.
- Para un campo y potencial eléctricos generados por una carga negativa:
- Si se calcula el potencial eléctrico asociado a una carga de prueba negativa, se encuentra una contribución positiva; ya que tenemos que invertir energía para mover la carga, puesto que las cargas de igual signo se repelen.
- Si se calcula el potencial eléctrico asociado a una carga de prueba positiva, la contribución es negativa; ya que las cargas de distinto signo se atraen y el sistema nos devuelve energía.
¿Qué es la diferencia de potencial entre dos puntos?
La diferencia de potencial eléctrico entre dos puntos es la cantidad de energía necesaria para mover una carga eléctrica desde un punto a otro en presencia de un campo eléctrico.
Una forma de evitar fijar el origen de potencial en nuestros cálculos es limitarnos a estudiar diferencias de potencial eléctrico entre dos puntos. Al restar el potencial eléctrico entre un punto y otro, la contribución constante (sea cual sea) se anulará y obtendremos una cantidad independiente de ella. Este es un concepto que se utiliza mucho en el tratamiento de circuitos eléctricos, porque es mucho más sencillo y útil trabajar con la diferencia de potencial existente entre los extremos de un circuito. Esto, porque la diferencia nos informa de la energía que se ha de invertir por unidad de carga para llevar cargas desde un extremo a otro (estableciendo un flujo de corriente).
La fórmula de la diferencia de potencial eléctrico entre dos puntos \(r_1\) y \(r_2\) es:
\[\Delta V_{1,2}=kQ\left( \dfrac{1}{r_2}-\dfrac{1}{r_1}\right)=-kQ\left(\dfrac{1}{r_1}-\dfrac{1}{r_2}\right)=\Delta V_{2,1}\]
Aquí es claro que se ha de especificar el punto final y el punto inicial, pues aparece un signo menos global.
El carácter conservativo del campo eléctrico implica algo muy sencillo: hacer un recorrido cerrado en el seno de un campo eléctrico da como resultado un cambio de energía nulo, pues la diferencia de potencial solo depende del punto inicial y el punto final.
Diagramas de potencial eléctrico y curvas equipotenciales
Al igual que un campo vectorial admite una representación diagramática como la de la figura 1, podemos estudiar la fórmula del potencial eléctrico asociado a cargas puntuales, para capturar de forma sencilla las principales características de esta magnitud física.
Fig. 2: Campo y potencial eléctrico de una carga puntual positiva.Fig. 3: Campo y potencial eléctrico de una carga puntual negativa.
Lo que se encuentra representado en la imagen como círculos concéntricos son las curvas equipotenciales; es decir, las regiones donde el potencial eléctrico asociado a cada carga es igual. Sabemos que, a pesar de tener la misma forma para cargas positivas y negativas, tienen signos opuestos.
Las principales características de esta representación son las siguientes:
- Las curvas equipotenciales son círculos concéntricos con el centro en la carga que produce el campo y el potencial (fijar el radio fija el valor del potencial).
- Las curvas equipotenciales son siempre perpendiculares a las líneas de campo
- Las curvas equipotenciales se representan con mayor densidad donde el potencial eléctrico es más intenso.
Potencial eléctrico - Puntos clave
- El potencial eléctrico es una función escalar asociada al campo eléctrico, que captura la energía por unidad de carga de las cargas que se encuentran en el seno del campo eléctrico; se mide en Voltios.
- El potencial eléctrico tiene una forma especialmente sencilla para el caso de una carga puntual. En general, además, tiene una contribución arbitraria constante de un origen de potencial.
- Habitualmente se escoge el origen de potencial en el infinito, en el caso de cargas puntuales, para facilitar los cálculos.
- Las diferencias de potencial entre dos puntos son independientes del origen de potencial y solo dependen de la posición de ambos puntos. Esto implica que el cambio de energía neto es nulo, al realizar bucles cerrados en el seno de un campo eléctrico.
- La representación diagramática de las superficies equipotenciales de un campo eléctrico da información sobre el comportamiento de las cargas y del campo eléctrico.
Aprende con 5 tarjetas de Potencial Eléctrico en la aplicación StudySmarter gratis
¿Ya tienes una cuenta? Iniciar sesión
Preguntas frecuentes sobre Potencial Eléctrico
¿Qué es potencial eléctrico?
El potencial eléctrico es una función escalar asociada al campo eléctrico que representa la energía o trabajo por unidad de carga que realiza el campo; se mide en Voltios.
¿Cómo se calcula el potencial eléctrico de una carga puntual?
El potencial eléctrico de una carga puntual se calcula según la fórmula V=k·Q/r+V_0, donde la segunda contribución es una contribución constante del origen de potencial.
¿Cuál es el potencial eléctrico creado por una carga puntual?
El potencial eléctrico creado por una carga puntual es V=k·Q/r+V_0, donde la segunda contribución es una contribución constante del origen de potencial.
¿Cómo se calcula el potencial eléctrico?
El potencial eléctrico se calcula, de forma general, realizando integrales de camino del campo eléctrico entre dos puntos espaciales.
Para el caso de una carga puntual, la forma es muy sencilla: V=k·Q/r+V_0, donde la segunda contribución es una contribución constante del origen de potencial.
¿Qué es un campo eléctrico uniforme?
Un campo eléctrico es un campo cuya intensidad no varía en el espacio. Es una idealización matemática, ya que si se calcula el potencial eléctrico, se pueden generar energías infinitas.
Acerca de StudySmarter
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.
Aprende más