Es de notar que, a pesar de no ser el sujeto habitual de estudio de la mecánica clásica, la teoría que describe propiedades de los materiales se basa en gran medida en leyes de la mecánica clásica, puesto que las propiedades macroscópicas de los materiales se derivan del comportamiento mecánico de los constituyentes microscópicos de los materiales.
- En este artículo estudiaremos las leyes de la mecánica clásica
- Hablaremos de las leyes de Newton.
- Aprenderemos conceptos como momento, trabajo y energía.
- Para termianar, haremos un breve repaso de los vectores y escalares.
¿Qué es la mecánica clásica?
La mecánica clásica es la rama de la física que se encarga del estudio del movimiento de los cuerpos y las fuerzas que actúan sobre ellos, en situaciones en las que las velocidades y las dimensiones de los cuerpos involucrados son significativamente inferiores a la velocidad de la luz y las dimensiones atómicas.
La mecánica clásica, a su vez, puede dividirse en dos grandes ramas: cinemática y dinámica:
- La cinemática estudia los movimientos y desplazamientos de los cuerpos.
- La dinámica estudia las causas del movimiento. Es decir, las fuerzas que producen el movimiento —según postuló el padre de la mecánica clásica, Isaac Newton—.
La mecánica clásica también estudia los cambios de energía de un cuerpo, así como el trabajo producido por las fuerzas que generan el movimiento. Como ya hemos mencionado, una gran parte de las leyes de la mecánica clásica, en términos de dinámica, están descritas en las leyes de Newton (que enunciaremos más adelante). Es por esto que, a menudo, la combinación de dinámica y cinemática derivadas de las leyes de Newton se conoce bajo el nombre de mecánica clásica newtoniana.
La mecánica clásica no es la mejor teoría que tenemos para describir la evolución de cualquier sistema. En primer lugar, una descripción más acertada y fundamental —cuyos efectos apenas percibimos en nuestro día a día— está recogida en la física cuántica y, en concreto, en la mecánica cuántica.
Por otro lado, la primera modificación histórica de la aparentemente inamovible mecánica clásica newtoniana vino dada por la teoría relativista. La mecánica relativista es una teoría cuyos efectos —al igual que los efectos cuánticos— no percibimos en nuestro día a día. Sin embargo, la comprobación experimental de los mismos nos lleva a utilizarla como una descripción más fundamental que la mecánica clásica, aunque para la mayoría de problemas no necesitaremos hacer uso de ella.
Clasificaciones de la mecánica en la física
Cinemática
El análisis de los cambios de velocidad, aceleración o desplazamiento de un objeto forman parte del área de estudio de la cinemática. En general, nos interesan los objetos que se mueven de forma lineal (cinemática lineal) o circular (cinemática rotacional). A continuación, mencionaremos brevemente un par de ejemplos de estos dos tipos de movimiento:
Cinemática lineal
Imagina el movimiento de una pelota sobre un raíl recto o de un coche en una carretera recta. La velocidad, el desplazamiento o la aceleración en estos sistemas se producen sobre un solo eje y en solo dos sentidos posibles, lo que simplifica el análisis y los cálculos.
Cinemática rotacional
Piensa en el movimiento de un asiento en un carrusel o de un satélite alrededor de la Tierra. Estos sistemas tienen interacciones más complejas entre las posiciones y los movimientos de sus componentes. Por ejemplo, dos objetos que giran a la misma velocidad alrededor de un mismo centro recorren distancias diferentes, por estar a distintas distancias del centro. En los sistemas lineales, en cambio, dos objetos con la misma velocidad recorren la misma distancia, aunque las direcciones y los ejes no sean los mismos.
Fig. 1: En el movimiento rotacional, los objetos a distinta distancia del centro cubren distancias diferentes, a pesar de tener la misma velocidad angular.
La cinemática rotacional también utiliza un conjunto diferente de magnitudes y sistemas de coordenadas adaptados a las cantidades que se manejan, para poder escribir las fórmulas de manera más sencilla. Por otra parte, mientras que la cinemática lineal utiliza un sistema cartesiano clásico, la cinemática rotacional suele utilizar un sistema cilíndrico o esférico.

Fig. 2: Sistemas de coordenadas. La cinemática lineal es sencilla de representar utilizando coordenadas como las cartesianas (a), cilíndricas (b) o esféricas (c).
Dinámica y leyes de la mecánica clásica
Para la dinámica, no es importante el desplazamiento o la velocidad de un cuerpo, sino cómo reacciona a los cambios y por qué. Las leyes de la mecánica clásica son las leyes de Newton, y son la piedra angular de la mecánica clásica. A continuación las presentamos muy brevemente.
Primera ley de Newton
Un objeto permanece en su mismo estado de movimiento, a menos que sea perturbado por una fuerza.
Segunda ley de Newton
La tasa de cambio del momento lineal de un objeto es igual a la fuerza total que actúa sobre él.
Tercera ley de Newton
Cuando dos cuerpos ejercen fuerzas el uno sobre el otro, las fuerzas son de igual magnitud, pero tienen la dirección opuesta.
La combinación de los conceptos de dinámica y las leyes de Newton sobre las fuerzas que actúan sobre los cuerpos nos permite comprender los sistemas en los que actúan múltiples fuerzas sobre un cuerpo o en los que dos cuerpos interactúan entre sí.
Momento, trabajo y energía
Estos tres conceptos forman parte del estudio de la mecánica clásica y se pueden derivar utilizando sus leyes básicas. Entonces, la utilidad reside en que se pueden describir los aspectos más relevantes de un sistema dinámico haciendo uso de estas magnitudes.
Momento
El momento es el producto de la masa de un objeto por su velocidad. Cuando un objeto acelera o desacelera, su momento cambia. El momento es importante en el análisis de algunas interacciones en las que los objetos intercambian energía al impactar entre sí, ya que se aplica la conservación del momento. Un ejemplo de este proceso es una colisión inelástica.
En una colisión inelástica, el momento global (suma total) de los objetos, antes y después de la colisión, debe ser el mismo.
Energía
Los objetos pueden tener energía cinética y potencial. En la mayoría de los sistemas se aplica la regla de la conservación de la energía, lo que significa que la energía total de un sistema es la misma en todo tiempo, independientemente de los procesos que tengan lugar dentro del mismo.
Trabajo
Es el cambio de energía producido por una fuerza en la dirección de desplazamiento. El trabajo producido está directamente relacionado con las fuerzas que mueven el objeto, e informa de manera sencilla sobre aspectos cinemáticos y dinámicos generales.
Vectores y escalares
Los vectores y los escalares son dos conceptos matemáticos muy utilizados en las leyes de la mecánica clásica y en el desarrollo general del formalismo matemático. Nos permiten expresar cantidades que sólo tienen una magnitud como escalares y cantidades que tienen tanto una magnitud como una dirección,; estas últimas se conocen como vectores.
Los vectores son especialmente útiles en dinámica, ya que permiten representar de forma sencilla un sistema de fuerzas que interactúan con un cuerpo. La representación utiliza una línea, a lo largo de la trayectoria de la fuerza aplicada, y una flecha para indicar su dirección. Un ejemplo clásico de la aplicación de vectores a fuerzas es el caso de un cuerpo que se desplaza en una pendiente.
Un coche está siendo arrastrado hacia arriba por una pendiente. La pendiente tiene un ángulo de 30 grados. La fuerza de la gravedad (flecha roja) tira del coche hacia abajo en dirección vertical.
Fig. 3: Diagrama de fuerzas que actúan sobre un coche que es arrastrado por una pendiente.
La fuerza gravitatoria (flecha roja) puede dividirse en dos componentes (flechas amarillas): una que actúa en dirección perpendicular a la pendiente y otra que actúa a lo largo de la misma.
La fuerza gravitatoria perpendicular a la pendiente provoca una respuesta de la pendiente de igual magnitud, pero de dirección opuesta (flecha rosa). La suma de estas fuerzas es cero, quedando como resultante la componente gravitatoria que tira del coche hacia abajo de la pendiente. La fuerza que ejerce nuestro sistema (flecha azul), tira del coche cuesta arriba y de forma paralela a la pendiente.
Si la fuerza del coche de seguridad es mayor que la componente horizontal de la gravedad, el coche se mueve hacia arriba; si es menor, el coche rueda colina abajo; si son iguales, el coche permanece estático.
Materiales
El estudio de los materiales y sus propiedades mecánicas es un aspecto importante de la física. Las propiedades de un material pueden indicarnos cuánta fuerza puede soportar un objeto y cómo reaccionará a las fuerzas que actúan sobre él. En mecánica, los objetos son indeformables; sin embargo, en la realidad, las fuerzas que actúan sobre un cuerpo lo deforman y afectan.
Propiedades como la elasticidad, la densidad, la dureza y la conductividad son propiedades intensivas de los materiales y vienen determinadas por condiciones específicas y microscópicas de cada material. No dependen de la cantidad de materia que estemos considerando.
Propiedades intensivas
Surgen como consecuencia de los mecanismos internos de los átomos que componen un objeto. Considera la elasticidad: las razones por las que los materiales son elásticos difieren. Por ejemplo, la elasticidad en los metales se produce por el cambio de la estructura atómica del material, mientras que en los polímeros es producto del estiramiento de las cadenas que componen el material.
Veamos brevemente algunas propiedades intensivas de los materiales:
- La elasticidad se define como la capacidad de un material de resistir la deformación después de que se le aplique una fuerza. El material, en este caso, puede volver a su forma original o deformarse permanentemente. Ten en cuenta que la elasticidad de un material tiene un límite. Cualquier material elástico se deformará irreversiblemente tras la aplicación de una determinada fuerza.
- La dureza se define como la resistencia de un material a ser deformado localmente, lo que suele conseguirse haciendo una hendidura con un objeto puntiagudo. Una relación interesante es que, habitualmente, la dureza de un material es inversa a su elasticidad. Muy a menudo, los materiales duros no son elásticos, y los materiales elásticos no son duros.
- La conductividad se define como la facilidad con la que un material conduce las cargas eléctricas. La conductividad está relacionada con la estructura atómica del material.
Mecánica - Puntos clave
- La mecánica clásica es la rama de la física que estudia las fuerzas que actúan sobre un objeto y los movimientos que genera.
- La mecánica clásica puede dividirse en las disciplinas de dinámica y cinemática. La dinámica estudia el desplazamiento, la trayectoria, la velocidad y la aceleración de un objeto. La cinemática estudia las fuerzas que producen el movimiento y cómo reacciona el objeto ante ellas.
- Las leyes de Newton describen cómo reacciona un cuerpo ante las fuerzas que alteran su estado de movimiento. La mecánica clásica también se llama mecánica clásica newtoniana, por basarse en las leyes de Newton.
- Los materiales, sus propiedades y las respuestas a las fuerzas externas también son objeto de estudio de la mecánica clásica. Entre las propiedades físicas importantes están la elasticidad, la dureza, la conductividad y la densidad.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel