\[\begin{align}\text{Fracc. }E_r=\dfrac{E_r}{E_r+E_t}\\\text{Fracc. }E_t=\dfrac{E_t}{E_r+E_t} \end{align} \]
Un ventilador de \(10\,\,\mathrm{kg}\) tiene tres aspas, cada una de las cuales mide \(0,5\,\,\mathrm{m}\) y pesa \(1\,\,\mathrm{kg}\). Las aspas giran alrededor de un eje perpendicular a su longitud. El momento de inercia de cada aspa puede hallarse mediante la fórmula de una varilla delgada, donde \(m\) es la masa y \(l\) es la longitud de cada varilla:
\[I_{varilla}=\dfrac{m_{varilla}\cdot r^2}{3}\]
a) ¿Cuál es la energía cinética de rotación de las aspas cuando giran a una velocidad de \(70\,\,\mathrm{rpm}\)?
b) ¿Cuál es la energía cinética de traslación del ventilador cuando se mueve a \(0,5\,\,\mathrm{m/s}\) en horizontal? Encuentra la relación entre la energía cinética traslacional y la rotacional.
Solución (a)
Utilizamos la fórmula de la energía cinética rotacional derivada anteriormente:
\[E_r=\dfrac{1}{2} I \omega^2\]
Sin embargo, nos han dado la velocidad de rotación en \(\mathrm{rpm}\), en lugar de \(\mathrm{rad/s}\). Por lo tanto, hay que convertir la velocidad de rotación a \(\mathrm{rad/s}\). Recordemos que una rotación por minuto es igual a \(2\pi\) radianes en \(60\) segundos:
\[\omega=\dfrac{70\,\,\mathrm{rpm}}{1\,\,\mathrm{min}}\cdot\dfrac{2\pi\,\,\mathrm{rad}}{1\,\,\mathrm{rev}}\cdot\dfrac{1\,\,\mathrm{min}}{60\,\,\mathrm{s}}=7,33\,\,\mathrm{rad/s}\]
A continuación, podemos calcular el momento de inercia de cada aspa, mediante la fórmula que hemos visto en el enunciado:
\[I_{varilla}=\dfrac{m\cdot r^2}{3}=\dfrac{1\,\,\mathrm{kg}\cdot (0,5\,\,\mathrm{m})^2}{3}=0,0833\,\,\mathrm{kg\cdot m^2}\]
Multiplicamos por el número de aspas, para encontrar el momento de inercia de todas las aspas:
\[I=3\cdot 0,0833\,\,\mathrm{kg\cdot m^2}=0,25\,\,\mathrm{kg\cdot m^2}\]
Por último, sustituimos el valor hallado en la expresión de la energía cinética de rotación:
\[E_r=\dfrac{1}{2}I\omega^2=\dfrac{1}{2}\cdot 0,25\,\,\mathrm{kg\cdot m^2}\cdot (7,33\,\,\mathrm{s^{-1}})^2=6,72\,\,\mathrm{J}\]
Solución (b)
Sustituimos los valores dados en la ecuación de la energía cinética traslacional:
\[E_t=\dfrac{1}{2}mv^2=\dfrac{1}{2}\cdot 10\,\,\mathrm{kg}\cdot(0,5\,\,\mathrm{m/s})^2=1,25\,\,\mathrm{J}\]
Para hallar la relación entre la energía traslacional y la rotacional, dividimos la energía traslacional entre la energía rotacional:
\[\dfrac{E_t}{E_r}=\dfrac{1,25\,\,\mathrm{J}}{6,72\,\,\mathrm{J}}=0,186\]
Esta relación indica que la mayor parte de la energía cinética del ventilador se utiliza para hacer girar sus aspas.