Saltar a un capítulo clave
En el artículo de hoy no te podremos asegurar que surja el amor entre los protagonistas, pero sí nos encargaremos de que aprendas muy bien qué es esta fuerza de tensión y cómo calcularla. ¡Vamos allá!
Definición de la fuerza de tensión
Una fuerza de tensión es la que se genera cuando se aplica una carga en los extremos de un objeto, normalmente en su sección transversal. También puede denominarse fuerza de tracción, esfuerzo o tensión.
En palabras más sencillas: es una fuerza desarrollada en una cuerda, cordel o cable, cuando se estira bajo una fuerza aplicada.
Este tipo de fuerza únicamente se ejerce cuando hay contacto entre un cable y un objeto. La tensión también permite transferir la fuerza a través de distancias relativamente grandes.
Fórmula de la fuerza de tensión
En función de si hay una fuerza externa, o no, calcularemos la tensión mediante una fórmula u otra. Veamos los dos casos, en detalle:
Tensión sin fuerza externa
Supongamos que tenemos un cuerpo de masa (\(m\)) sobre un trozo de cuerda, como se muestra a continuación. La gravedad tira de él hacia abajo, lo que hace que su peso actúe, tal y como vemos en la figura a continuación:
Para que la cuerda no se acelere hacia abajo, debido a su masa, debe ser tirada hacia arriba con una fuerza igual. Esto es lo que llamamos tensión. Si no se acelera, podemos decir que: \[T = mg\].
Tensión con fuerza externa
Cuando tenemos tensión en un objeto que se acelera hacia arriba —por ejemplo, un ascensor que lleva a la gente a los pisos superiores de un edificio—, la tensión no puede ser igual al peso de la carga: sino que será mayor. Entonces, ¿de dónde viene el añadido?
\[\text{Tensi}\mathrm{\acute{o}}\text{n} = \text{Fuerza para equilibrar} + \text{Fuerza adicional para acelerar}\]
Esto se escribe matemáticamente como:
\[\begin{align} T&=mg+ma \\ T&=m(g+a) \end{align}\]
La situación es distinta cuando el ascensor desciende. La tensión no será igual a \(0\), lo que haría que estuviera en caída libre. Será ligeramente inferior al peso del objeto. Así que, para expresar esa ecuación:
\[\text{Tensi}\mathrm{\acute{o}}\text{n} = \text{Fuerza necesaria para equilibrar} - \text{Fuerza liberada}\].
Lo que, matemáticamente, será:
\[\begin{align} T&=mg-ma \\ T&=m(g-a) \end{align}\]
Ejemplos fuerza de tensión
Veamos un par de ejemplos prácticos.
Tensión en una cuerda
Cuando las partículas se liberan del reposo, en el diagrama siguiente, ¿cuál es la tensión en la cuerda que las sujeta?
Solución:
En una situación como esta, la partícula con mayor masa será la que caiga, y la partícula con menor masa subirá. Tomemos la partícula con \(2\,\mathrm{kg}\) de masa como partícula \(A\) y la de \(5\,\mathrm{kg}\) de masa como partícula \(B\).
Para calcular el peso de cada partícula, tenemos que multiplicar su masa por la gravedad:
\[\begin{align} P_A&=2\cdot g \\ P_B&=5\cdot g\end{align}\]
Ahora, puedes utilizar la ecuación para la aceleración y la tensión de cada partícula:
\[\begin{align} \text{Part. A}&\rightarrow T-2g=2a \\ \text{Part. B}&\rightarrow 5g-T=5a \end{align} \]
Resuélvelo ahora simultáneamente. Suma ambas ecuaciones para eliminar la variable \(T\):
\[3g = 7a\]
Si tomamos \(g=9,8\,\mathrm{m/s^2}\)
\[a=4,2\,\mathrm{m/s^2}\]
Puedes sustituir la aceleración en cualquiera de las ecuaciones para obtener la tensión.
Sustituyamos la aceleración en la ecuación 1:
\[\begin{align} T-2g&=2\cdot 4,2 \\ T-19,6&=8,4 \\ T&=28\,\mathrm{N} \end{align} \]
Hay dos partículas, una con una masa de \(2\,\mathrm{kg}\), asentada sobre una mesa lisa, y la otra con una masa de \(20\,\mathrm{kg}\), colgada del lateral de la mesa sobre una polea que conecta ambas partículas. Estas partículas se han mantenido en su sitio todo este tiempo y, ahora, se sueltan. ¿Qué ocurrirá a continuación? ¿Cuál es la aceleración y la tensión en la cuerda?
Solución:
Hagamos la descomposición de fuerzas para ver con qué estamos trabajando.
Tomemos la partícula con \(2\,\mathrm{kg}\) de masa como partícula \(A\) y la partícula con \(20\,\mathrm{kg}\) de masa es la partícula \(B\).
Ahora, resolvamos la partícula \(A\) (horizontalmente):
\[T = ma\]
Y la partícula \(B\) (verticalmente).
\[mg -T = ma\]
Sustituimos los datos que tenemos:
\[\begin{align} T&=2a \\ 20g-T&=20a \end{align} \]
Ya podemos sumar ambas ecuaciones para anular las tensiones:
\[\begin{align} 20g &= 22a \\ a&=8,9\,\mathrm{m/s^2} \end{align} \]
Con esto calculamos la aceleración y podemos sustituir su valor en cualquiera de las ecuaciones anteriores. Calculando el valor de la tensión, obtenemos:
\[\begin{align} T&=2\cdot 8,9 \\ T&=17,8\,\mathrm{N}. \end{align} \]
¿Cómo calcular la tensión de una cuerda con cierto ángulo?
Podemos calcular la tensión de una cuerda unida a un peso en un ángulo. Resolvamos un ejemplo, para ver cómo se hace.
Halla la tensión en cada parte de la cuerda en el diagrama siguiente.
Solución:
Lo que tendremos que hacer es plantear dos ecuaciones, a partir de todo el diagrama: una para las fuerzas verticales y otra para las horizontales. Así que resolvemos la tensión de ambas cuerdas en sus respectivas componentes vertical y horizontal.
\[ \begin{align} \text{Vertical}&\rightarrow T_1\cos(20^{\circ})+T_2\cos(30^{\circ})=50 \\ \text{Horizontal}&\rightarrow T_1\sin(20^{\circ})=T_2\sin(30^{\circ}) \end{align}\]
Como aquí tenemos dos ecuaciones y dos incógnitas, vamos a utilizar el procedimiento de ecuaciones simultáneas, para hacerlo por sustitución.
Ahora, reordenaremos la segunda ecuación y la sustituimos en la primera ecuación.
\[\begin{align} T_1&=\dfrac{T_2\sin(30^{\circ})}{\sin(20^{\circ})} \\ \left(\dfrac{0,5\cdot T_2}{0,342}\right)\cos(20^{\circ})+T_2\cos(30^{\circ})&=50 \\ 1,374\cdot T_2+0,866\cdot T_2&=50 \\ 2,24\cdot T_2&=50 \\ T_2&=22,32\,\mathrm{N} \end{align}\]
Ya que tenemos un valor para \(T_2\), podemos pasar a sustituirlo en cualquiera de las ecuaciones. Utilicemos la segunda:
\[\begin{align} T_1\sin(20^{\circ})&=22,32\sin(30^{\circ}) \\ T_1&=\dfrac{11,16}{0,342} \\ T_1&=32,63\,\mathrm{N} \end{align}\]
Fuerza de tensión - Puntos clave
- Una fuerza de tensión es la que se desarrolla en una cuerda, cordel o cable, cuando se estira bajo una fuerza aplicada.
- Cuando no hay aceleración, la tensión es igual al peso de una partícula.
- La tensión también puede denominarse fuerza de tracción o esfuerzo.
- Este tipo de fuerza únicamente se ejerce cuando hay contacto entre un cable y un objeto.
- Cuando hay aceleración, la tensión es igual a la fuerza necesaria para equilibrar, más la fuerza extra necesaria para acelerar.
Aprende con 8 tarjetas de Fuerza de tensión en la aplicación StudySmarter gratis
¿Ya tienes una cuenta? Iniciar sesión
Preguntas frecuentes sobre Fuerza de tensión
¿Qué es la fuerza de tensión?
Una fuerza de tensión es una fuerza desarrollada en una cuerda, cordel o cable cuando se estira bajo una fuerza aplicada.
¿Cómo se determina la fuerza de tensión?
La fuerza de tensión se determina de las siguientes maneras:
Para un objeto colgado sin fuerzas externas, la tensión será igual al peso:
T=mg
Si hay fuerzas externas, la tensión será igual al peso más (o menos) la fuerza externa:
T=mg+(-)F
¿Cuál es la fórmula de la fuerza de tensión?
La fórmula de la fuerza de tensión depende de qué tipo de fuerza se aplica:
- Fórmula sin fuerza externa:
T=mg
- Fórmula con fuerza externa:
T=mg ± F= mg ± ma.
¿Cómo calcular la tensión de una cuerda?
Para calcular la tensión de una cuerda tendremos que igualar la tensión a la suma de fuerzas que actúan en esa dirección.
¿Cómo es la tensión sin fuerza externa, y con fuerza externa?
La tensión sin una fuerza externa será igual al peso:
T=mg.
En el caso de que actúe una fuerza externa, la tensión será el peso más (o menos, en función del sentido de la fuerza externa) esta fuerza, tal que:
T= mg ± ma.
Acerca de StudySmarter
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.
Aprende más