Movimiento de proyectiles

Cuando un objeto se mueve en una dimensión, ya sea vertical u horizontal, lo denominamos movimiento lineal. En cambio, el movimiento de proyectil es un movimiento en las direcciones horizontal y vertical al mismo tiempo. El movimiento de un objeto en una trayectoria curva (parábola) bajo la influencia de la gravedad se denomina movimiento de proyectil.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué ángulo producirá el alcance máximo en el movimiento de un proyectil?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál de los siguientes ángulos de lanzamiento produciría la mayor altura recorrida por un objeto?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Para obtener el alcance mínimo, ¿con qué ángulo debe lanzarse un objeto?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que un objeto se suelta en ángulo y golpea el suelo al mismo nivel. ¿Cuál es la relación entre la velocidad inicial y la velocidad final del objeto?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La trayectoria que sigue el movimiento de un proyectil se denomina:

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

De las siguientes opciones, elige la que no sea un ejemplo de movimiento de proyectil.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un objeto se lanza verticalmente desde el borde de un acantilado a una altura de 60 m con una velocidad de 5 m/s. Calcula el tiempo total que tarda el objeto en llegar al fondo. Supón que g = 10m/s2.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Las componentes x e y en el movimiento de un proyectil son independientes entre sí. ¿Verdadero o falso?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Tienes dos objetos similares. Uno de ellos se suelta y el otro se lanza horizontalmente al mismo tiempo desde la misma altura. Sin tener en cuenta la resistencia del aire, ¿llegarán ambos objetos al suelo al mismo tiempo?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un objeto se lanza desde el suelo con un ángulo de 45° y una velocidad de 10 m/s. ¿Cuál es el tiempo total que tarda la bola en chocar contra el suelo?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un cuerpo de 50 kg se proyecta con una velocidad de 25 m/s a 60°. ¿Cuál es el alcance?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué ángulo producirá el alcance máximo en el movimiento de un proyectil?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál de los siguientes ángulos de lanzamiento produciría la mayor altura recorrida por un objeto?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Para obtener el alcance mínimo, ¿con qué ángulo debe lanzarse un objeto?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que un objeto se suelta en ángulo y golpea el suelo al mismo nivel. ¿Cuál es la relación entre la velocidad inicial y la velocidad final del objeto?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La trayectoria que sigue el movimiento de un proyectil se denomina:

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

De las siguientes opciones, elige la que no sea un ejemplo de movimiento de proyectil.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un objeto se lanza verticalmente desde el borde de un acantilado a una altura de 60 m con una velocidad de 5 m/s. Calcula el tiempo total que tarda el objeto en llegar al fondo. Supón que g = 10m/s2.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Las componentes x e y en el movimiento de un proyectil son independientes entre sí. ¿Verdadero o falso?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Tienes dos objetos similares. Uno de ellos se suelta y el otro se lanza horizontalmente al mismo tiempo desde la misma altura. Sin tener en cuenta la resistencia del aire, ¿llegarán ambos objetos al suelo al mismo tiempo?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un objeto se lanza desde el suelo con un ángulo de 45° y una velocidad de 10 m/s. ¿Cuál es el tiempo total que tarda la bola en chocar contra el suelo?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un cuerpo de 50 kg se proyecta con una velocidad de 25 m/s a 60°. ¿Cuál es el alcance?

Mostrar respuesta

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Movimiento de proyectiles?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    El movimiento deproyectil es un movimiento en dirección horizontal y vertical al mismo tiempo.

    Para que te hagas a la idea del movimiento de proyectil, imagina que disparamos una bala de cañón con un ángulo respecto a la horizontal. La bala de cañón se lanzará al aire y recorrerá cierta distancia verticalmente antes de chocar contra el suelo a cierta distancia del cañón. La bala de cañón sigue una trayectoria parabólica, como puedes ver en la figura 1.

    Movimiento de proyectil Trayectoria en parábola de una bala de cañón en movimiento de proyectil StudySmarter

    Figura 1. La bala de cañón sigue una trayectoria parabólica y se desplaza en dirección vertical y horizontal al mismo tiempo.

    Movimiento de proyectil: movimiento horizontal y vertical

    Aunque el movimiento del proyectil es el movimiento en las direcciones horizontal y vertical simultáneamente, ambas direcciones son independientes entre sí. Como resultado, puedes utilizar las ecuaciones de movimiento lineal para el movimiento horizontal y vertical por separado al resolver cuestiones asociadas al movimiento de proyectil.

    Para comprender mejor esta idea, considera dos canicas del mismo tamaño y peso. Sueltas una canica desde una altura determinada y lanzas la otra horizontalmente desde la misma altura. Si no tienes en cuenta la resistencia del viento, ambas canicas chocarán contra el suelo al mismo tiempo, porque la componente horizontal no influye en el movimiento vertical de la canica.

    La distinción entre el movimiento en las direcciones x e y es importante porque nos muestra que podemos utilizar las ecuaciones lineales de los movimientos independientemente para las direcciones x e y. Veamos algunos escenarios a continuación para ilustrar mejor este concepto.

    ¡No olvides consultar nuestra explicación sobre Movimiento lineal!

    Calcular el movimiento de un proyectil sin ángulo

    Para calcular el movimiento de un proyectil sin ángulo, tenemos que conocer las ecuaciones del movimiento, que son

    \[v = u + at\]

    \ s = u \cdot t + \frac{1}{2} a \cdot t^2\]

    \[v^2 = u^2 + 2 a \cdot s\]

    En estas ecuaciones, v es la velocidad final medida en metros por segundo (m/s), u es la velocidad inicial medida en m/s, a es la aceleración medida en metros por segundo al cuadrado (m/s2), s es el desplazamiento medido en metros (m), y t es el tiempo medido en segundos (s).

    Ejemplos de ecuaciones de movimiento de proyectil sin ángulo

    Supón que tienes un cuerpo que rueda por un acantilado con una velocidad de 5 m/s. El cuerpo golpea el suelo a una distancia d de la base de un acantilado que tiene una altura de 30 m. La figura 3 muestra el movimiento del proyectil sin ángulo, es decir, lanzado paralelo a la horizontal. Calcula el alcance d recorrido por el objeto.

    Movimiento de proyectiles Movimiento de proyectiles sin ángulo StudySmarter

    Figura 3. Movimiento del proyectil sin ángulo. Movimiento del proyectil sin ángulo. Usama Adeel - StudySmarter Originals

    Solución

    Para calcular d, la distancia desde la base del acantilado, necesitamos comprender mejor el movimiento en las direcciones x e y.

    Suponiendo que no hay resistencia del aire y que sólo actúa sobre la bola la fuerza gravitatoria, la velocidad en la dirección x será de 5 m/s hasta que la bola toque el suelo. En la dirección y, la pelota tiene una aceleración constante de 9,81m/s2, provocada por la fuerza gravitatoria.

    Pero, ¿cuál es la velocidad inicial en la dirección y?

    Como ya se ha dicho, dado que el movimiento en las direcciones x e y son independientes entre sí, la velocidad de 5 m/s en la dirección x no influye en el movimiento en la dirección y. Por lo tanto, la bola rueda por el acantilado con una velocidad inicial de 0 m/s en la dirección y.

    El desplazamiento horizontal será de -30 m porque la dirección descendente se considera negativa junto con la aceleración de caída libre, que es de -9,81 m/s2.

    Movimiento de proyectiles Movimiento de proyectiles sin ángulo StudySmarter

    Figura 4. La velocidad en la dirección y aumentará debido a la aceleración en la dirección y. La velocidad en la dirección x permanecerá constante. Usama Adeel - StudySmarter Originals

    Para la dirección x

    Velocidad inicial: ux = 5 m/s

    Distancia recorrida en la dirección x: dx = ?

    Para la dirección y

    Velocidad inicial: uy = 0 m/s

    Desplazamiento:sy = -30 m

    Aceleración debida a la caída libre =ay = -9,81 m/s2

    A partir del movimiento en la dirección y, podemos calcular el tiempo t porque el tiempo es el mismo en la dirección x y en la dirección y. Utilizando la segunda ecuación del movimiento e introduciendo los valores, obtenemos

    \[s_y = u_y \cdot t + \frac{1}{2} a \cdot t^2\].

    \[-30 m = 0 \cdot t + \frac{1}{2} (9,81 m/s^2) \cdot t^2]

    \cdot t = 2,47 s\]

    Por tanto, el tiempo que tarda la pelota en llegar al suelo desde una altura de 30 m es de 2,47 s.

    Para calcular la distancia recorrida desde la base del precipicio dx, volvemos a utilizar la segunda ecuación del movimiento, pero esta vez será para el movimiento en la dirección x.

    \[d_x = u_x \cdot t + \frac{1}{2} a_x \cdot t^2\]

    \[d_x =5 m/s \cdot (2,47 s) + \frac{1}{2} (0) \cdot (2,47s)^2\]

    \d_x = 12,35 m\]

    La distancia que recorre la pelota en la dirección x con una velocidad inicial de 5 m/s desde una altura de 30 m es de 12,35 m.

    Puedes utilizar cualquier ecuación de movimiento para calcular una entidad concreta en función del problema relacionado con el movimiento de un proyectil.

    Calcular el movimiento de un proyectil en un ángulo

    Antes hemos hablado del movimiento de proyectil de un objeto lanzado sin ángulo. Para el movimiento de proyectil con ángulo, el principio es el mismo que para el movimiento de proyectil sin ángulo. Pero para hacerlo un poco más complicado, vamos a resolver un problema de lanzamiento y aterrizaje en diferentes elevaciones.

    Ejemplos de ecuaciones de movimiento de proyectiles con diferentes elevaciones

    Observa la siguiente figura. Una bala de cañón es disparada desde un acantilado a una velocidad inicial de 90 m/s desde una altura de 25 m desde el suelo con un ángulo de 53°. Calcula la distancia que recorre la bala de cañón en la dirección x.

    Movimiento de proyectiles Movimiento de proyectiles en ángulo StudySmarter

    Figura 5. Movimiento del proyectil en un ángulo. Usama Adeel - StudySmarter Originals

    Solución

    Como puedes ver en la figura anterior, el suelo está elevado 9 m desde la base del acantilado donde caerá la bala de cañón. Esto significa que el desplazamiento en la dirección y no será de 25 m, sino que será distinto.

    En primer lugar, descompongamos el vector velocidad en sus componentes.

    Movimiento de proyectiles Resolución de vectores en el movimiento de proyectiles en un ángulo StudySmarter

    Figura 6. Resolución del vector en sus componentes Resolución del vector en sus componentes. Usama Adeel - StudySmarter Originals

    Velocidad inicial en la dirección x: Vx=90cos53m/s

    Velocidad inicial en la dirección y: Vy=90sin53m/s

    El desplazamiento será de -16m, ya que la dirección hacia abajo se toma como negativa.

    Movimiento de proyectiles Movimiento de proyectiles en ángulo StudySmarter

    Figura 7. Movimiento del proyectil en un ángulo. El desplazamiento será diferente ya que el suelo está elevado donde cae la bola. Usama Adeel - StudySmarter Originals

    Utilizando la segunda ecuación del movimiento e introduciendo los valores, podemos calcular el tiempo t que tarda la bala de cañón en caer al suelo desde el lanzamiento. Ten en cuenta que el tiempo empleado será el mismo en la dirección x o en la dirección y.

    \[s_y = u_y \cdot t + \frac{1}{2} a_y \cdot t^2\]

    \[-16 = (90 \sin 53 m/s) \cdot t + \frac{1}{2} (-9,81 m/s^2) \cdot t^2\]

    \cdot t = 14,45 s\]

    Como la resistencia del aire es despreciable, la velocidad en la dirección x será constante, es decir, será 90cos53 durante todo el movimiento. Podemos calcular la distancia recorrida multiplicando la velocidad en la dirección x por el tiempo empleado. Por tanto

    \[d_x = (90 \cos 53 m/s) \cdot 14,45 s\]

    \[d_x =

    Por tanto, la distancia horizontal que recorre la bala de cañón disparada es de 782,66 m.

    Factores que afectan al movimiento de los proyectiles

    En los dos escenarios anteriores, hemos supuesto que la resistencia del aire era despreciable. En la práctica, sin embargo, no podemos ignorar la resistencia del aire. Del mismo modo, hay otros factores que influyen en la trayectoria del movimiento de un proyectil. Veamos estos factores.

    La gravedad

    Aunque la gravedad no afecte directamente al movimiento horizontal, el tiempo de caída del objeto disminuirá si la gravedad es mayor. Por tanto, la componente vertical del movimiento del proyectil se verá limitada. A su vez, el objeto estará menos tiempo en el aire y recorrerá menos distancia en la dirección x.

    Resistencia del aire

    La resistencia del aire disminuirá la componente horizontal de la trayectoria. Sin embargo, en la resistencia del aire también influyen otros factores, como

    • La relación superficie/volumen: un objeto con una superficie mayor se ve afectado por una mayor resistencia del aire.
    • La superficie del objeto: una superficie rugosa se verá más afectada por la resistencia del aire.
    • La velocidad: si aumenta la velocidad de un objeto, también aumentará la resistencia del aire.

    La resistencia del aire siempre afectará al proyectil, independientemente del ángulo o la altura desde la que se lance.

    Lavelocidad de lanzamiento es otro factor que afecta al movimiento del proyectil. Si la velocidad de lanzamiento es mayor, la distancia recorrida por un objeto también será mayor.

    El ángulo de lanzamiento

    Considerando que la resistencia del aire es despreciable y que tanto el punto de lanzamiento como el de aterrizaje están a la misma altura,se considera que el ángulo óptimo para una trayectoria máxima es de 45°.

    Sin embargo, si el ángulo de lanzamiento es mayor o menor que 45°, se recorrerá una distancia menor en el eje horizontal o vertical. La figura 8 ilustra un objeto lanzado con diferentes ángulos y la distancia recorrida.

    En el gráfico, la velocidad de lanzamiento es de 10 m/s, y se supone que no hay resistencia del aire. T es el tiempo de vuelo, t es el tiempo desde el lanzamiento, R es el alcance y H es el punto más alto de la trayectoria. La longitud representa la velocidad en cada instante del gráfico.

    Movimiento del proyectil Ángulo de lanzamiento movimiento del proyectil StudySmarter

    Figura 8. Trayectorias de proyectiles lanzados a diferentes ángulos de elevación. Cmglee CC BY-SA 3.0

    Altura de lanzamiento

    Si se lanza un objeto desde más arriba, la distancia recorrida será mayor, porque la componente horizontal influirá sobre el objeto durante más tiempo.

    Supongamos que tienes dos objetos a distintas alturas, y quieres lanzar cada uno de ellos de forma que ambos objetos recorran la misma distancia. No hay resistencia del aire, ambos objetos tienen el mismo tamaño y masa, y ambos se lanzan a la misma velocidad.

    El objeto lanzado desde una altura mayor deberá lanzarse con un ángulo decreciente y viceversa para el objeto lanzado desde una altura menor. Por tanto, existe una relación entre la altura de lanzamiento y la distancia recorrida horizontalmente.

    Giro

    La cantidad de efecto de una pelota también determinará la distancia que puede recorrer una vez que la golpeas. En pocas palabras, el alcance de la distancia aumenta si golpeas con un backspin. Lo contrario ocurre con el topspin.

    Movimiento de proyectil - Puntos clave

    • El movimiento de proyectil es el movimiento de un objeto en una trayectoria curva (parábola) bajo la influencia de la gravedad.
    • El movimiento de proyectil se produce cuando un objeto se mueve en dos dimensiones, es decir, un objeto se desplaza en las direcciones horizontal y vertical simultáneamente.
    • Las direcciones horizontal y vertical en un movimiento de proyectil son independientes entre sí, pero sus periodos de tiempo serán los mismos.
    • Podemos dividir el vector proyectil en sus componentes x e y. En un movimiento de proyectil, ni las componentes horizontales ni las verticales impactan entre sí.
    • También podemos utilizar las ecuaciones lineales de los movimientos independientemente para las direcciones horizontal y vertical.

    Imágenes

    Movimiento compuesto. https://commons.wikimedia.org/wiki/File:Compound_Motion.gif

    Movimiento ideal del proyectil para diferentes ángulos. https://commons.wikimedia.org/wiki/File:Ideal_projectile_motion_for_different_angles.svg

    Preguntas frecuentes sobre Movimiento de proyectiles
    ¿Qué fórmulas se utilizan en el movimiento de proyectiles?
    Se utilizan fórmulas de cinemática, como las ecuaciones para la altura (y) y la distancia horizontal (x) en función del tiempo (t).
    ¿Qué es el movimiento de proyectiles?
    El movimiento de proyectiles es un tipo de movimiento en el que un objeto sigue una trayectoria curva bajo la influencia de la gravedad.
    ¿Cuáles son las principales variables en el movimiento de proyectiles?
    Las principales variables son la velocidad inicial, el ángulo de lanzamiento, el tiempo de vuelo, y la altura máxima.
    ¿Cómo se calcula el alcance de un proyectil?
    El alcance se calcula usando la fórmula R = (v0^2 * sen(2θ)) / g, donde v0 es la velocidad inicial, θ es el ángulo de lanzamiento, y g es la aceleración debida a la gravedad.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    ¿Qué ángulo producirá el alcance máximo en el movimiento de un proyectil?

    ¿Cuál de los siguientes ángulos de lanzamiento produciría la mayor altura recorrida por un objeto?

    Para obtener el alcance mínimo, ¿con qué ángulo debe lanzarse un objeto?

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Física

    • Tiempo de lectura de 12 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.