Diferencia de fase

La fase de una onda es el valor que representa una fracción de un ciclo de onda. En una onda, un ciclo completo, de cresta a cresta o de valle a valle, es igual a 2π [rad]. Cada fracción de esa longitud, por tanto, es menor que 2π [rad]. Medio ciclo es π [rad], mientras que un cuarto de ciclo es π/2 [rad]. La fase se mide en radianes, que son unidades adimensionales.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Diferencia de fase?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Diferencia de fase

  • Tiempo de lectura de 7 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Diferencia de fase, Ciclos de onda, StudySmarterFig. 1 - Los ciclos de onda se dividen en radianes, y cada ciclo cubre 2π [rad] de distancia. Los ciclos se repiten después de 2π [rad] (valores rojos). Cada valor mayor que 2π [rad] es una repetición de los valores entre 0π [rad] y 2π [rad].

    La fórmula de la fase de onda

    Para calcular la fase de onda en una posición arbitraria, tienes que identificar a qué distancia se encuentra dicha posición del inicio de tu ciclo de onda. En el caso más sencillo, si tu onda puede aproximarse mediante una función seno o coseno, tu ecuación de onda puede simplificarse como:

    \[y = A \cdot \sin(x)\]

    Aquí, A es la amplitud máxima de la onda, x es el valor en el eje horizontal, que se repite de 0 a 2π para las funciones seno/coseno, e y es la altura de la onda en x. La fase de cualquier punto x puede determinarse mediante la ecuación siguiente:

    \[x = \sin^{-1}(y)\]

    La ecuación te da el valor de x en radianes, que debes convertir a grados para obtener la fase. Esto se hace multiplicando x por 180 grados y dividiendo después por π.

    \[\phi(x) = x \cdot \frac{180^{circ}}{\pi}\]

    A veces, una onda puede representarse mediante una expresión como \(y = A \cdot \sin(x - \phi)\). En estos casos, la onda está desfasada en \(\phi\) radianes.

    El desfase de las ondas

    El desfase de las ondas se produce cuando dos ondas se mueven y sus ciclos no coinciden. La diferencia de fase se conoce como diferencia de ciclo entre dos ondas en el mismo punto.

    Las ondas superpuestas que tienen el mismo ciclo se conocen como ondas en fase, mientras que las ondas con diferencias de fase que no se superponen se conocen como ondas fuera de fase. Las ondas desfasadas pueden anularse entre , mientras que las ondas enfase pueden amplificarse mutuamente.

    La fórmula de la diferencia de fase

    Si dos ondas tienen la misma frecuencia/periodo, podemos calcular su diferencia de fase. Tendremos que calcular la diferencia en radianes entre las dos crestas que están una al lado de la otra, como en la figurasiguiente .

    Diferencia de fase, Señales de onda de fase, StudySmarterFig. 2 - La diferencia de fases entre dos ondas i(t) y u(t) que varían respecto al tiempo (t) provoca una diferencia espacial en su propagación

    Esta diferencia es el desfase:

    \[\Delta \phi = \phi_1 - \phi_2\]

    He aquí un ejemplo de cómocalcular la fase de onda y la diferencia de fase de onda.

    Una onda con una amplitud máxima A de 2 metros se representa mediante una función seno. Calcula la fase de la onda cuando ésta tiene una amplitud de y = 1.

    Utilizando la relación \(y = A \cdot \sin (x)\) y resolviendo para x nos da la siguiente ecuación:

    \[x = \sin^{-1}\Big(\frac{y}{A}\Big) = \sin^{-1}\Big(\frac{1}{2}\Big)\].

    Esto nos da

    \(x = 30^{\circ}\})

    Convirtiendo el resultado a radianes, obtenemos

    \[\phi(30) = 30^{\circ}\cdot \frac{\pi}{180^\circ} = \frac{\pi}{6}\].

    Supongamos ahora que otra onda con la misma frecuencia y amplitud está desfasada con respecto a la primera, siendo su fase en el mismo punto x igual a 15 grados. ¿Cuál es la diferencia de fase entre ambas?

    En primer lugar, tenemos que calcular la fase en radianes para 15 grados.

    \[\phi(15) = 15^{\circ}\cdot \frac{\pi}{180^\circ} = \frac{\pi}{12}\].

    Restando ambas fases, obtenemos la diferencia de fase:

    \[\Delta \phi = \phi(15) - \phi(30) = \frac{\pi}{12}\]

    En este caso, vemos que las ondas están desfasadas en π / 12, es decir, 15 grados.

    Ondas en fase

    Cuando las ondas están en fase, sus crestas y depresiones coincid en entre sí, como muestra la figura 3. Las ondas en fase experimentan una interferencia constructiva. Si varían en el tiempo (i(t) y u(t)), combinan su intensidad (derecha: púrpura).

    Diferencia de fase, Interferencia constructiva, StudySmarterFig. 3 - Interferencia constructiva

    Ondas desfasadas

    Las ondas desfasadas producen un patrón de oscilación irregular, ya que las crestas y las depresiones no se superponen. En casos extremos, cuando las fases se desplazan π [rad] o 180 grados, las ondas se anulan entre sí si tienen la misma amplitud (véase la figura siguiente). En ese caso, se dice que las ondas están en antifase, y suefecto se conoce como interferencia destructiva.

    Diferencia de fase, Interferencia destructiva, StudySmarterFig. 4 - Las ondas desfasadas experimentan una interferencia destructiva. En este caso, las ondas \(i(t)\) y \(u(t)\) tienen una diferencia de fase de \(180\) grados, lo que hace que se anulen mutuamente

    La diferencia de fase en distintos fenómenos ondulatorios

    La diferencia de fase produce distintos efectos, según los fenómenos ondulatorios, que pueden utilizarse para muchas aplicaciones prácticas.

    • Ondas sísmicas: los sistemas de muelles, masas y resonadores utilizan el movimiento cíclico para contrarrestar las vibraciones producidas por las ondas sísmicas. Los sistemas instalados en muchos edificios reducen la amplitud de las oscilaciones, reduciendo así la tensión estructural.
    • Tecnologías desupresión del ruido: muchas tecnologías de supresión del ruido utilizan un sistema de sensores para medir las frecuencias entrantes y producir una señal sonora que anula esas ondas sonoras entrantes. Las ondas sonoras entrantes ven así reducida su amplitud, lo que en sonido está directamente relacionado con la intensidad del ruido.
    • Sistemas de alimentación: cuando se utiliza una corriente alterna, la tensión y la corriente pueden tener una diferencia de fase. Se utiliza para identificar el circuito, ya que su valor será negativo en los circuitos capacitivos y positivo en los inductivos.

    La tecnología sísmica se basa en sistemas de masa-muelle para contrarrestar el movimiento de las ondas sísmicas, como, por ejemplo, en la torre Taipei 101. El péndulo es una esfera con un peso de 660 toneladas métricas. Cuando fuertes vientos u ondas sísmicas golpean el edificio, el péndulo se balancea hacia delante y hacia atrás, oscilando en dirección opuesta a la que se mueve el edificio.

    Diferencia de fase, El péndulo en Taipei, StudySmarterFig. 5 - El movimiento del péndulo de la torre Taipei 101 está desfasado con respecto al movimiento del edificio en 180 grados. Las fuerzas que actúan sobre el edificio (Fb) son contrarrestadas por la fuerza del péndulo (Fp) (el péndulo es la esfera).

    El péndulo reduce las oscilaciones del edificio y también disipa la energía, actuando así como un amortiguador de masa sintonizada. Un ejemplo del péndulo en acción se observó en 2015, cuando un tifón hizo oscilar la bola del péndulo más de un metro.

    Diferencia de fase - Puntos clave

    • La diferencia de fase es el valor que representa una fracción de un ciclo de onda.
    • Las ondas en fase se superponen y crean una interferencia constructiva, que aumenta sus máximos y mínimos.
    • Las ondas desfasadas crean una interferencia destructiva que crea patrones irregulares. En casos extremos, cuando las ondas están desfasadas 180 grados pero tienen la misma amplitud, se anulan mutuamente.
    • La diferencia de fase ha sido útil para crear tecnologías de mitigación sísmica y tecnologías de cancelación del sonido.
    Preguntas frecuentes sobre Diferencia de fase
    ¿Qué es la diferencia de fase?
    La diferencia de fase es la medida del desfase entre dos señales sinusoidales, expresada en grados o radianes.
    ¿Cómo se mide la diferencia de fase?
    Se mide en grados (°) o radianes (rad), comparando los puntos correspondientes de las dos señales.
    ¿Qué importancia tiene la diferencia de fase?
    Es crucial en sistemas de comunicación y detección, donde sincronizar señales es esencial para la operación correcta.
    ¿Qué sucede si hay una diferencia de fase de 180 grados?
    Una diferencia de fase de 180° indica señales en oposición de fase, lo que puede resultar en cancelación si las amplitudes son iguales.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    ¿Cómo se llama cuando dos ondas con la misma intensidad tienen una diferencia de fase de 180 grados?

    Las ondas pueden estar desfasadas o ...

    ¿Qué significa que las ondas estén "en fase"?

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Física

    • Tiempo de lectura de 7 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.