Además, tiene multitud de aplicaciones en nuestro mundo, desde el cine y el ocio hasta las mediciones de la física avanzada, como las que midieron las primeras perturbaciones de ondas gravitacionales que utilizaron la interferencia de haces de luz. Debido a ello, es conveniente estudiar el comportamiento de la luz para poder manipularla y utilizarla en distintos escenarios, así como predecir su comportamiento en otros.
La óptica geométrica es el estudio del funcionamiento de los sistemas ópticos sencillos que afectan a haces de luz para producir distintos efectos. Se basa en la descripción ondulatoria de la luz (y no en la descripción corpuscular o cuántica, que se desarrolló a lo largo del siglo XX).
Espejos y lentes perfectos en física
Los sistemas ópticos de los que se ocupa la óptica geométrica se suelen basar en varios fenómenos fundamentales de la óptica ondulatoria y, en casos sencillos, en la asunción de que los elementos que conforman el sistema son ideales. Entendamos primero cuáles son los elementos habituales que se usan en los sistemas ópticos y bajo qué aproximaciones se estudia su comportamiento.
Refracción óptica y lentes delgadas
La refracción óptica es el proceso físico-óptico por el cual los haces de luz modifican su trayectoria al pasar de un medio a otro.
En general, cuando un haz de luz llega al límite que separa dos medios distintos, una fracción cambia de medio (se refracta) mientras que otra fracción permanece en el mismo medio (se reflecta).
El ejemplo más sencillo de refracción es ver cómo varía la imagen de una pajita en un vaso de agua: cuando los rayos de luz pasan del aire al agua (o viceversa) modifican su dirección y la imagen que nos llega se distorsiona.
Una lente es el objeto óptico de un sistema óptico que implementa procesos de refracción. Una lente delgada es una lente que no presenta reflexión (es perfectamente transparente) y toda la fracción de luz entrante la atraviesa y es refractada.
Reflexión óptica y espejos perfectos
La reflexión óptica es el proceso físico-óptico por el cual los haces de luz modifican su trayectoria al llegar al límite entre dos medios y permanecen en el medio del que procedían.
El ejemplo más sencillo de reflexión es la luz de la Luna. La Luna no emite luz por sí misma; pero, cuando el Sol se oculta tras la Tierra y es de noche, los rayos de luz del Sol alcanzan la superficie de la luna, que refleja parte de ellos, y llegan a la Tierra.
Un espejo es el objeto óptico de un sistema óptico que implementa procesos de reflexión. Un espejo perfecto es una lente que no presenta refracción (es perfectamente reflectante) y toda la fracción de luz entrante rebota en el espejo y es reflejada.
Fórmulas matemáticas de la óptica geométrica
En su forma más sencilla, la óptica geométrica estudia el comportamiento de la luz, a través de sistemas ópticos formados por lentes delgadas y espejos perfectos.
La formulación matemática de las leyes que obedecen los haces de luz es muy sencilla y quedan recogidas en las leyes de las lentes delgadas y las leyes de los espejos perfectos.
En el nivel simplificado en el que nos encontramos, el comportamiento de la luz se estudia haciendo uso de diagramas de rayos. Estos recogen una representación diagramática de los rayos de luz en sistemas ópticos, obedeciendo ciertas reglas dictadas por las leyes de las lentes y los espejos. Estudiarás estos diagramas en las explicaciones correspondientes.
Leyes de las lentes delgadas
Tanto las lentes delgadas como los espejos perfectos se definen a través de una cantidad asociada llamada foco, que es una distancia característica desde el centro matemático de la lente o espejo. En el caso de las lentes, el foco se define como la longitud horizontal medida desde la lente hasta el punto hacia el que se desvían los rayos que proceden del infinito.
La formulación exacta de las leyes y su estudio en detalle se dejará para otras explicaciones, pero aquí mencionaremos brevemente la fenomenología básica. Para ello, es útil establecer los dos tipos básicos de lentes que existen: lentes convergentes y divergentes.
Leyes de las lentes delgadas convergentes
Las lentes convergentes son lentes que concentran los rayos que inciden hacia un punto o región espacial. Cuando son lentes delgadas, los rayos se concentran siempre hacia el plano sobre el cual se sitúa el foco.
- Si un objeto está a una distancia mayor del doble del foco de la lente, se forma una imagen invertida al otro lado de la lente de menor tamaño.
- Si un objeto está a una distancia entre el doble del foco y el foco de la lente, se forma una imagen invertida al otro lado de la lente de mayor tamaño.
- Si un objeto está a una distancia menor del foco de la lente, se forma una imagen virtual en el mismo lado de la lente del que provienen los rayos.
- Si un objeto está en el foco, se forma una imagen real en el infinito.
Leyes de las lentes delgadas divergentes
Las lentes convergentes son lentes que, independientemente de si son delgadas o no, esparcen los rayos de luz incidentes y hacen que diverjan. Estas lentes solo son capaces de formar imágenes virtuales (en el mismo lado de la lente del que proceden los rayos de luz).
Leyes de los espejos perfectos
Las leyes de los espejos perfectos son muy parecidas a las leyes de las lentes delgadas, y obedecen también una clasificación entre dos tipos de espejos: cóncavos y convexos, que hace referencia a su forma. Las leyes de los espejos son equivalentes a las de las lentes, pero se cambia cóncavo por convergente y convexo por divergente. Aún así, el análisis es más complejo, por lo que se dejará para la explicación específica.
Sistemas ópticos y aplicaciones de la óptica geométrica
La utilidad de la óptica geométrica reside en poder calcular de forma sencilla la potencia de un cierto sistema óptico cuyo comportamiento no ideal se aproxima mediante lentes y espejos ideales.
La óptica geométrica nos ha permitido entender y mejorar el funcionamiento de los telescopios del visible desarrollados a lo largo de la historia, así como a desarrollar leyes generales para luz no visible. Los microscopios son también un gran ejemplo de una aplicación de la óptica geométrica, que nos ha permitido expandir el conocimiento del mundo a escalas nunca exploradas antes.
El funcionamiento específico de estos sistemas, así como la introducción de los defectos de los sistemas ópticos a través de las leyes básicas de la reflexión y refracción recogidas en la ley de Snell, se dejarán para futuras explicaciones. A continuación, tan solo vamos a introducir un sistema óptico cuyas características lo hacen ciertamente particular: el prisma.
Prisma
Un prisma es un instrumento óptico de forma (generalmente) triangular donde la luz sufre los efectos de la refracción y reflexión. Su peculiaridad es que la luz, al atravesar el prisma, se descompone en los colores del arcoíris.
Tal y como podrás entender cuando estudies la ley de Snell, la luz sufre los efectos de la refracción al pasar de un medio a otro; en el caso del prisma, cuando pasa del aire al cristal. Además, la inclinación de las caras del prisma también afecta al ángulo de incidencia de la luz en el objeto.
Todo esto produce que la velocidad de la luz en el interior del prisma disminuya, afectando diferente a las distintas longitudes de onda y generando distintos ángulos de salida y desdoblamientos. Este proceso ocasiona este arcoíris que observamos.
Estos prismas tienen aplicaciones en distintos ámbitos como la fotografía, por ejemplo.
Óptica Geométrica - Puntos clave
- La óptica geométrica es la disciplina que estudia el comportamiento de los haces de luz bajo una aproximación ondulatoria.
- Los fenómenos ópticos principales que estudia la óptica geométrica son la reflexión y la refracción. La ley básica que permite describir estos fenómenos es la ley de Snell.
- Los objetos ópticos que implementan fenómenos de refracción en sistemas ópticos son las lentes. Cuando son ideales, se llaman lentes delgadas.
- Los objetos ópticos que implementan fenómenos de reflexión en sistemas ópticos son los espejos. Cuando son ideales, se llaman espejos perfectos.
- La óptica geométrica comprende la descripción de las fórmulas de las lentes delgadas y los espejos perfectos, así como la descripción diagramática de los sistemas ópticos y la luz que los atraviesa mediante diagramas que obedecen ciertas reglas.
- El telescopio y el microscopio son ejemplos de sistemas ópticos que se pueden entender de forma sencilla utilizando la óptica geométrica.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel