Procesamiento de Lenguaje Natural

Si alguna vez has utilizado una aplicación de traducción, has hecho que el texto predictivo deletree por ti esa palabra complicada, o has dicho las palabras "Alexa, ¿qué tiempo hará mañana?", entonces has disfrutado de los productos del procesamiento del lenguaje natural.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Procesamiento de Lenguaje Natural?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    No es casualidad que ahora podamos comunicarnos con los ordenadores utilizando el lenguaje humano -fueron entrenados para ello- y en este artículo vamos a descubrir cómo. Empezaremos por ver la definición y la historia del procesamiento del lenguaje natural, antes de pasar a los distintos tipos y técnicas. Por último, veremos el impacto social que ha tenido el procesamiento del lenguaje natural.

    Definición del Procesamiento del Lenguaje Natural

    El procesamiento del lenguaje natural (PLN) es una rama de la inteligencia artificial (IA) que ayuda en el proceso de programar ordenadores/software informático para que "aprendan" lenguas humanas. El objetivo de la PNL es crear software que comprenda el lenguaje tan bien como nosotros.

    El procesamiento del lenguaje natural tiene sus raíces en la lingüística, la informática y el aprendizaje automático, y existe desde hace más de 50 años (¡casi tanto como el ordenador moderno!).

    Hoy podemos ver los resultados del PLN en cosas como Siri de Apple, los resultados de búsqueda sugeridos de Google y aplicaciones de aprendizaje de idiomas como Duolingo.

    Procesamiento del lenguaje natural, amazon echo dot, StudySmarterFig. 1. Podemos hablar con "Alexa" gracias al procesamiento del lenguaje natural

    Historia del Procesamiento del Lenguaje Natural

    Los inicios de la PNL tal y como la conocemos hoy surgieron en la década de 1940, tras la Segunda Guerra Mundial. La naturaleza global de la guerra puso de relieve la importancia de comprender múltiples lenguas diferentes, y los técnicos esperaban crear un "ordenador" que pudiera traducir las lenguas por ellos.

    La creación de dicho ordenador resultó bastante difícil, y lingüistas como Noam Chomsky identificaron problemas relacionados con la sintaxis. Por ejemplo, Chomsky descubrió que algunas frases parecían gramaticalmente correctas, pero su contenido no tenía sentido. Sostuvo que para que los ordenadores entendieran el lenguaje humano, tendrían que entender las estructuras sintácticas.

    Estructurassintácticas - En 1957, Noam Chomsky publicó su influyente libro Estructuras sintácticas, en el que defendía que la sintaxis debía tratarse separadamente de la semántica y que debía existir un enfoque formal y estandarizado para analizar la sintaxis.

    En la década de 1990, la PNL había recorrido un largo camino y ahora se centraba más en la estadística que en la lingüística, en "aprender" más que en traducir, y utilizaba más algoritmos de Aprendizaje Automático. Utilizar el Aprendizaje Automático significaba que la PNL había desarrollado la capacidad de reconocer trozos similares de discurso y ya no necesitaba basarse en coincidencias exactas de expresiones predefinidas. Por ejemplo, un software que utilizara PNL entendería tanto "¿Qué tiempo hace?" como "¿Qué tiempo hace?".

    En 2011, Apple lanzó el primer asistente virtual de PNL de éxito y disponible públicamente, Siri.

    ¿Cómo funciona el Procesamiento del Lenguaje Natural?

    Probablemente ya te estés preguntando cómo funciona la PNL; aquí es donde los conocimientos de lingüística te serán útiles.

    La PNL utiliza la IA para captar el lenguaje humano del mundo real y realizar tareas de procesamiento con el fin de convertir el lenguaje en un código que el ordenador pueda entender. Este proceso consta de dos partes:

    • Preprocesamiento (a veces denominado procesamiento de datos): consiste en descomponer el lenguaje y convertirlo en datos con los que pueda trabajar un algoritmo.

    • Desarrollo del algoritmo - Una vez que el lenguaje se ha convertido en datos, hay que desarrollar un algoritmo para procesarlos y utilizarlos.

    Veamos ahora algunas de las técnicas de preprocesamiento más comunes. Estas técnicas tienen sus raíces en la lingüística y el análisis lingüístico. Hoy no veremos el desarrollo de algoritmos, ya que está menos relacionado con la lingüística.

    Técnicas de Procesamiento del Lenguaje Natural

    Existen dos tipos principales de preprocesamiento: el análisis sintáctico y el semántico. Antes de sumergirnos en estas técnicas, veamos algunas definiciones de estos dos términos.

    Sintaxis - La disposición y el orden de las palabras dentro de una frase. La estructura sintáctica más básica es sujeto-verbo-objeto (SVO).

    Semántica - Rama de la lingüística que estudia el significado, la lógica y la relación de las palabras y entre ellas.

    Análisis sintáctico

    El análisis sintáctico consiste en examinar una frase en su conjunto para comprender su significado, en lugar de analizar palabras sueltas. Hay varias técnicas de análisis sintáctico que utiliza la PNL.

    Análisis sintáctico

    El análisis sintáctico consiste en descomponer una frase en cada uno de sus constituyentes. Un constituyente es una unidad del lenguaje que cumple una función en una frase; pueden ser palabras sueltas, frases o cláusulas. Por ejemplo, la frase "El gato tocael piano de cola" tiene dos constituyentes principales: la frase nominal(el gato) y la frase verbal(toca el piano de cola). La frase verbal puede dividirse a su vez en otros dos constituyentes, el verbo(toca) y la frase nominal(el piano de cola).

    El análisis sintáctico consiste en representar los constituyentes de cada frase en un árbol sintáctico, como el que se muestra a continuación:

    Procesamiento del lenguaje natural, Árbol de análisis sintáctico, StudySmarterFig. 2. Ejemplo de árbol sintáctico

    Los árboles sintácticos nos muestran la relación entre las palabras de una frase y cómo se combinan para formar constituyentes. Por ejemplo, podemos ver que"el piano de cola" es un constituyente, pero"toca el" no lo es. Esta información puede convertirse en datos para un algoritmo de PNL.

    Stemming

    La separación de palabras es un proceso morfológico que consiste en reducir las palabras conjugadas a su raíz.

    Conjugación (adj. conjugado) - Inflexión de un verbo para mostrar diferentes significados gramaticales, como el tiempo, el aspecto y la persona. La inflexión de los verbos suele consistir en añadir sufijos al final del verbo o cambiar la ortografía de la palabra.

    Palabra raíz - Caminar (verbo)

    Conjugaciones - caminar, caminó, camina, caminante

    Devolver cada palabra a su forma original puede ayudar a los algoritmos de la PNL a reconocer que, aunque las palabras se escriban de forma diferente, tienen el mismo significado esencial. También significa que sólo es necesario almacenar en una base de datos las palabras raíz, en lugar de todas las conjugaciones posibles de cada palabra.

    Segmentación del texto

    La segmentación de textos es el proceso de separar el lenguaje en unidades significativas, como morfemas (por ejemplo, un-, suerte, -y), palabras, frases, párrafos e intención (es decir, ¿cuál es el propósito del lenguaje? ¿hace una pregunta, proporciona una afirmación o da una orden?).

    Análisis semántico

    A veces las frases pueden seguir todas las reglas sintácticas pero no tener sentido semántico. Por eso es importante realizar también análisis semánticos. Éstos ayudan a los algoritmos a comprender el tono, el propósito y el significado intencionado del lenguaje.

    Análisis de Sentimiento

    El análisis de sentimientos es una técnica de PNL que pretende comprender si el lenguaje es positivo, negativo o neutro. También puede determinar el tono del lenguaje, como enfadado o urgente, así como la intención del lenguaje (por ejemplo, obtener una respuesta, presentar una queja, etc.). El análisis de sentimientos funciona encontrando vocabulario que existe en listas preexistentes.

    Adjetivos como decepcionado, equivocado, incorrecto y molesto se recogerían en la fase de preprocesamiento y permitirían al algoritmo saber que el fragmento de lenguaje (por ejemplo, una reseña) era negativo.

    Desambiguación

    La desambiguación de palabras es el proceso de intentar eliminar las ambigüedades léxicas. Una ambigüedad léxica se produce cuando no está claro qué significado tiene una palabra.

    "Nos vemos en el banco".

    La palabra banco tiene más de un significado, por lo que existe una ambigüedad sobre qué significado se pretende aquí. Observando el contexto más amplio, se podría eliminar esa ambigüedad.

    "Necesito ingresar dinero, así que nos vemos en el banco".

    Ahora podemos ver que la palabra banco se refiere a un establecimiento financiero y no a una ribera o al verbo bancar.

    Eliminar las ambigüedades léxicas ayuda a garantizar que se está entendiendo el significado semántico correcto.

    Ejemplos de Procesamiento del Lenguaje Natural

    Ahora que tenemos una buena idea de lo que es el PLN y cómo funciona, veamos algunos ejemplos reales de cómo afecta el PLN a nuestra vida cotidiana.

    Filtros de correo electrónico

    Si abres tu correo electrónico y miras el menú, probablemente encontrarás diferentes carpetascomo "spam" o "social". Los correos electrónicosque has recibido se han "filtrado" automáticamente a estas carpetas en función del vocabulario que contienen. Esto es un tipo de análisis de sentimiento.

    Texto predictivo

    Uno de los primeros usos de la PNL fue en el texto predictivo. Hoy en día, el texto predictivo utiliza técnicas de PNL y "aprendizaje profundo" para corregir la ortografía de una palabra, adivinar qué palabra utilizarás a continuación y hacer sugerencias para mejorar tu escritura.

    Actividad: Intenta enviar un mensaje utilizando sólo texto predictivo. Es posible crear un mensaje completo utilizando únicamente las palabras sugeridas propuestas por el texto predictivo. Gracias a la PNL, estas palabras serán únicas y adaptadas a ti, ¡y pueden crear mensajes muy divertidos (y reveladores)!

    Aplicaciones lingüísticas

    El procesamiento del lenguaje natural ha mejorado enormemente las aplicaciones de traducción de idiomas. Puede ayudar a garantizar que la traducción tenga sentido sintáctico y gramatical en la nueva lengua, en lugar de limitarse a traducir directamente palabras sueltas.

    Procesamiento del lenguaje natural, imagen de la traducción lingüística en línea, StudySmarterFig. 3. La traducción de idiomas tal y como la conocemos hoy no sería posible sin el PNL

    El impacto social del Procesamiento del Lenguaje Natural

    En 2016, los investigadores Hovy & Spruit publicaron un artículo sobre las implicaciones sociales y éticas de la PNL. En él, destacan que hasta hace poco no se consideraba necesario debatir las consideraciones éticas de la PNL; esto se debía principalmente a que la PNL no implica la participación de seres humanos. Sin embargo, los investigadores son cada vez más conscientes del impacto social que los productos de la PNL pueden tener en las personas y en la sociedad en su conjunto.

    He aquí algunos de los principales problemas que identificaron:

    • Exclusión - La PNL puede aprender de las culturas dominantes, facilitando su uso y haciéndola más apropiada para quienes proceden de esas culturas dominantes.

    • Sobregeneralización - La PNL puede llevar al software a hacer suposiciones generalizadas sobre cosas como nuestro sexo, edad, religión y orientación sexual.

    • Sesgo - La mayoría de las herramientas de PNL se centran en el inglés y, por tanto, pueden producir datos más ricos para los angloparlantes que para los demás.1

    Procesamiento del Lenguaje Natural - Puntos clave

    • El procesamiento del lenguaje natural (PLN) es una rama de la inteligencia artificial (IA) que ayuda a programar software informático para que "aprenda" lenguas humanas.
    • El procesamiento del lenguaje natural tiene sus raíces en la lingüística, la informática y el aprendizaje automático.
    • La PNL utiliza la IA para captar el lenguaje humano del mundo real y realizar tareas de procesamiento para convertir el lenguaje en código que el ordenador pueda entender. Este proceso consta de dos partes: el preprocesamiento y el desarrollo de algoritmos.
    • El preprocesamiento consiste en categorizar el lenguaje en datos con los que pueda trabajar un algoritmo. Las técnicas comunes de preprocesamiento incluyen el análisis sintáctico (por ejemplo, el análisis sintáctico, el stemming y la segmentación del texto) y el análisis semántico (por ejemplo, el análisis de sentimientos y la desambiguación).
    • Podemos ver ejemplos de PLN en el texto predictivo, los filtros de correo electrónico, las aplicaciones de aprendizaje de idiomas, los asistentes virtuales (p. ej., Siri), etc.

    Referencias

    1. D. Hovy & S. L. Spruit. El impacto social del procesamiento del lenguaje natural. 2016.
    Preguntas frecuentes sobre Procesamiento de Lenguaje Natural
    ¿Qué es el Procesamiento de Lenguaje Natural?
    El Procesamiento de Lenguaje Natural es una rama de la inteligencia artificial que se enfoca en la interacción entre computadoras y humanos mediante lenguaje natural.
    ¿Para qué se utiliza el Procesamiento de Lenguaje Natural?
    El Procesamiento de Lenguaje Natural se utiliza en aplicaciones como chatbots, traducción automática, análisis de sentimientos y asistentes virtuales.
    ¿Cuáles son las principales técnicas del Procesamiento de Lenguaje Natural?
    Las principales técnicas incluyen el análisis sintáctico, el análisis semántico, el reconocimiento de entidades nombradas y el modelado del lenguaje.
    ¿Qué desafíos enfrenta el Procesamiento de Lenguaje Natural?
    Los desafíos incluyen la ambigüedad del lenguaje, la variabilidad lingüística, la comprensión del contexto y la generación de respuestas coherentes.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    Verdadero o falso, un software que utilice el procesamiento del lenguaje natural entendería tanto "¿Qué tiempo hace?" como "¿Qué tiempo hace?"

    El procesamiento del lenguaje natural implica dos procesos. ¿Cuáles son?

    El preprocesamiento implica dos tipos diferentes de análisis. ¿Cuáles son?

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Inglés

    • Tiempo de lectura de 12 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.