Saltar a un capítulo clave
Aunque factorizar y simplificar se parezcan, son situaciones diferentes que se ocupan con el mismo fin.Simplificar implica hacer una expresion mas sencilla. De este modo la funcion cambia pero sigue siendo la misma. Factorizar implica encontrar terminos comunes que luego pueden ser usados para simplificar la expresion.
Funciones con fracciones algebraicas
Toda fraccion con dos factores en el denominador se puede expresar como varias fracciones, esto implica que expresiones fraccionarias con multiples terminos algebraicos pueden expresarse como fracciones parciales. Ademas podemos denotar a cada parte de la fraccion como dos funciones que son f(x) y g(x) para el numerador y el denominador respectivamente, aunque puedes darles el nombre que desees.
Por ejemplo si se tienen las funciones f(x) y g(x) como fracciones, donde:
Esto se puede expresar como:
Podemos ver que cada fracción contiene uno de los factores lineales de la fracción mayor original. Básicamente, lo que estamos haciendo es descomponer una fracción en dos fracciones. Esto hace que la fracción sea mucho más fácil de integrar, y la integral se puede encontrar fácilmente. El metodo de fracciones parciales es el que permite encontrar los valores de A y B.
Encontrar fracciones parciales
Hay dos métodos clave para hallar fracciones parciales. Veamos el primero: la sustitución.
De lo anterior, sabemos que:
Al utilizar el método de sustitución, podemos ver que el denominador de la fraccion está en ambos lados de la ecuación, por lo que el numerador es igual y, por lo tanto:
Ahora podemos tomar valores para x. Esto es porque si hacemos que (x+2) o (x+1) sea igual a cero, entonces A(x+2) o B(x+1) también será igual a cero.
Por tanto, si dejamos que:
Similarmente:
Por tanto, nuestra respuesta es:
Ejemplos de fracciones parciales
Hay un método claro que veremos a través de un ejemplo.
Escribe las fracciones parciales y luego integra la siguiente funcion f(x).
SOLUCIÓN:
Esto es utilizando el método de sustitución.
Paso 1 - Factorizar el denominador.
Paso 2 - Escribir una forma intermedia.
Paso 3 - Multiplicar en cruz para escribir el numerador.
Paso 4 - Sustituir para que los términos dentro de los paréntesis sean 0.
Sea : x= -2.
Si: x=-1
Paso 5 - Escribe la respuesta.
Ahora es mucho más fácil de integrar:
Ahora veamos un ejemplo más complicado. La razón por la que este ejemplo es más complicado es porque lo tenemos en forma. Cuando llegamos a dividir esto en fracciones parciales obtenemos:
Esta vez utilizamos el segundo método: la equiparación de coeficientes. Si utilizamos un ejemplo:
Entonces podemos multiplicar los denominadores y obtener:
Entonces igualamos estos coeficientes. Como no hay términos o, los igualamos a 0 y nuestros términos constantes a 5:
Así que nuestra fracción parcial final es:
Escribe en fracciones parciales la funcion f(x):
SOLUCIÓN:
Paso 1 - Factorizar el denominador. [(x+1)2(x+2) como se indica en la pregunta.
Paso 2 - Escribir la forma intermedia.
Nota: esto es un poco diferente de la última vez, ya que tenemos (x+1)2(x+2) y por ellos descomponerlo en la forma:
Esto es como también es un factor.
Paso 3A - Igualar los coeficientes.
Esto significa que en lugar de sustituir, ampliamos los denominadores con los numeradores correspondientes. Así acabamos teniendo:
Paso 3B - Expandir y simplificar.
Paso 4 - Escribir las ecuaciones:
Sustituir para encontrar B y C:
Así que nuestra respuesta final es:
Esto es de nuevo mucho más fácil de integrar que el original, y termina dando:
Veamos un ejemplo más.
Paso 1: factorizaremos el denominador. Haciendo esto tendremos un denominador de (x+2) y uno como (x+2)2 y uno como (x+2)3.
Paso 2: escribimos la forma intermedia:
Paso 3: Multiplicar los denominadores.
Paso 4: Simplificar e igualar los coeficientes.
Paso 5: Resolver las ecuaciones.
O sea A=2, B=4, C=6.
En fracciones parciales tenemos:
Paso 6: Ahora, podemos integrar esto.
Así que nuestra respuesta final es:
Herramientas útiles factorizando funciones
Muchas veces encontraras funciones que a primera vista no esperas puedan expresarse como fracciones parciales, muchas veces estas funciones requeriran ser simplificadas para poder usar fracciones parciales. Ejemplos de ellos son funciones con polinomios y funciones donde puedes encontrar factores comunes. Vamos ambas acontinuacion.
Factor común en fracciones
Supongamos que se tiene una funcion donde hay dos un polinomio en la parte superior o inferior, la otra parte de la fraccion corresponde a una funcion lineal, estas son f(x) y g(x), donde f(x) es el polinomio y g(x) la funcion lineal. En estos casos se puede encontrar una expresion donde hay algun factor comun del polinomio que pueda simplificar la expresion.
h(x)=g(x)/f(x)
Aqui podrias tratar de expresar f(x) como un producto de funciones lineales para poder obtener una expresión que puedas soluciones mediante fracciones parciales. Veamos un ejemplo
En este caso se tiene la expresion:
Puedes factorizar el termino x2-x+2 como (x-2)(x+1), en este caso se puede eliminar (x-2), ya que (x-2) es un factor comun de f(x) y g(x), y por lo tanto se tiene:
Lo cual puede ahora resolverse más fácilmente como una fracción parcial.
Simplificando polinomios y fracciones algebraicas
Cuando se tienen polinomios en ambas funciones f(x) y g(x), debes intentar factorizar ambos polinomios como:
Veamos un ejemplo.
Se tiene la siguiente fracción con términos algebraicos que corresponden a dos polinomios, uno de grado 2 y uno de grado 3.
Puedes intentar factorizar los polinomios de modo que se tengan expresiones del tipo (x+k) donde k es una constante. En este caso deberías de encontrar las raices del polinomio para expresar las como (x+a1)(x+b1) para f(x) y (x+a2)(x+b2)(x+b3) para g(x).
Si usas la formula cuadratica para resolver las raices del polinomio de grado dos obtendrias x=2 y x=-1, por lo tanto la funcion x2-2x-2 es:
Si encuentras las raices del polinomio de grado tres g(x), obtendrias x=2, x=-1 y x=-3. De este modo el polinomio se expresaria como:
Si sustituimos estas expresiones en lugar de tus expresiones originales tienes:
Por lo tanto se pueden eliminar los factores comunes (x-2) y (x+1). El resultado es una expresión que no requiere ser expresada como fracciones parciales. Sin embargo si el resultado hubiese eliminado solo un factor común y no dos, el resultado podría ser expresado como una fracción parcial.
Factorización de fracciones - Puntos clave
- Las fracciones parciales nos permiten integrar fracciones más difíciles.
- Hemos visto dos métodos, la sustitución y la equiparación de coeficientes.
- La sustitución consiste en hacer que todo lo que está dentro de los paréntesis sea cero (0) para eliminar otras variables, ya que 0 multiplicado por cualquier cosa es 0.
- Igualar coeficientes consiste en expandir los paréntesis y hacer coincidir el lado izquierdo con el derecho.
.
Aprende con 5 tarjetas de Factorización de fracciones en la aplicación StudySmarter gratis
¿Ya tienes una cuenta? Iniciar sesión
Preguntas frecuentes sobre Factorización de fracciones
¿Cuál es la diferencia entre factorizar y simplificar?
Simplificar implica hacer una expresion mas sencilla. De este modo la funcion cambia pero sigue siendo la misma. Factorizar implica encontrar terminos comunes que luego pueden ser usados para simplificar la expresion.
¿Cómo factorizar una ecuacion con fracciones?
Por lo general se usa el metodo de fracciones parciales. Con el cual puedes dividir una fraccion complicada en varias mas sencillas.
¿Cómo se simplifican las expresiones algebraicas fraccionarias?
Usando el metodo de fracciones parciales para descomponer una fraccion de la forma f(x)/g(x) a A/h(x)+B/w(x). Las funciones h y w surgen del denominador de la funcion.
Acerca de StudySmarter
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.
Aprende más