Modelado de movimiento de partículas

Desplazamiento, velocidad, aceleración. Tres atributos clave de las partículas en movimiento con los que sin duda estás familiarizado. Pero, ¿qué los une? ¿Cómo se relacionan matemáticamente? La respuesta es el cálculo.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Modelado de movimiento de partículas?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Modelado de movimiento de partículas

  • Tiempo de lectura de 12 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Definición del modelado del movimiento de las partículas

    ¿Qué es exactamente modelizar el movimiento de las partículas?

    Modelizar el movimiento deuna partícul a es el proceso de describir el movimiento de un objeto discreto o "partícula" utilizando lenguaje matemático.

    Esto puede hacerse de varias formas, como con ecuaciones diferenciales o funciones de transferencia, pero en matemáticas AP se hará utilizando funciones del tiempo.

    Modelización del movimiento de una partícula en función del tiempo

    Al modelizar el movimiento de una partícula en función del tiempo, debes considerar las dos variables de la función: la variable dependiente y la variable independiente.

    El tiempo es siempre la variable independiente, pero ¿cuál es la variable dependiente?

    Bueno, eso depende de qué parte del movimiento de la partícula estés modelando: posición, desplazamiento, velocidad o aceleración. ¿Qué aspecto podría tener el desplazamiento de una partícula en función del tiempo? Pues...

    \[s(t) = t^3 + 2t^2 + t + 3\]

    ¿Y su velocidad?

    \[v(t) = 3t^2 + 4t + 1 \]

    ¿Y su aceleración?

    \[a(t) = 6t + 4\]

    Estos ejemplos son polinomios, pero cualquier función continua del tiempo podría modelizar el movimiento de una partícula.

    Utilizando estas funciones, puedes calcular el desplazamiento, la velocidad y la aceleración de una partícula en cualquier momento del tiempo.

    Por ejemplo, ¿cuál es el desplazamiento de la partícula en \(3\) segundos? Pues...

    \[ \begin{align} s(t) &= t^3 + 2t^2 + t + 3 \\\\ s(3) &= 3^3 + 2\cdot 3^2 + 3 + 3 \\\\ &= 27 + 18 + 6 \\\\ &= 51 \,m \end{align} \]

    Modelización del movimiento de las partículas con diagramas

    Para comprender plenamente el modelado del movimiento de las partículas, puede ser útil visualizarlo con diagramas. Al modelizar el movimiento de una partícula en función del tiempo en matemáticas AP, generalmente la partícula se mueve a lo largo de una línea recta, por lo que puede ser como una recta numérica.

    El desplazamiento de la partícula se define como su distancia desde algún punto \(0\) especificado. El desplazamiento de la partícula es un valor vectorial, lo que significa que tiene tamaño y dirección.

    El diagrama siguiente muestra cómo medir la posición de una partícula a lo largo de una recta numérica. La posición de la partícula se mide a partir de un punto \(0\) determinado.

    Modelado del movimiento de las partículas, posición de las partículas en una recta numérica, studysmarterFig. 1. Posición de la partícula .

    Eldesplazamiento es similar a la posición, pero sutilmente diferente. El desplazamiento describe dónde se encuentra la partícula respecto a su posición inicial. Podemos hallar el desplazamiento restando la posición inicial de la posición actual. Si la posición inicial de la partícula es cero, el desplazamiento y la posición son equivalentes.

    Por ejemplo, si la posición inicial es \(-1\), y la posición actual es \(2\), entonces el desplazamiento es

    \[s = 2 - (-1) = 3\]

    Modelado del movimiento de partículas, desplazamiento de partículas en una recta numérica, studysmarterFig. 2. Desplazamiento de una partícula.

    La velocidad de una partícula es la tasa de cambio de su desplazamiento/posición. En otras palabras, la rapidez con la que cambia el desplazamiento/posición de la partícula. Si una partícula tiene una velocidad positiva, se está moviendo en la dirección positiva de la recta numérica (hacia la derecha), si tiene una velocidad negativa se está moviendo en la dirección negativa de la recta numérica (hacia la izquierda).

    Modelización del movimiento de las partículas, velocidad de las partículas en una recta numérica, studysmarterFig. 3. Velocidad de una partícula.

    La aceleración de una partícula es la tasa de cambio de su velocidad. En otras palabras, la rapidez con la que cambia su velocidad. Si una partícula tiene una aceleración positiva, su velocidad aumenta en sentido positivo, y si una partícula tiene una aceleración negativa, su velocidad aumenta en sentido negativo.

    Modelado del movimiento de partículas, aceleración de partículas en una recta numérica, studysmarterFig. 4. Aceleración de una partícula.

    ¡Es importante recordar que la aceleración y la velocidad de una partícula no tienen necesariamente la misma dirección!

    Derecha-positivo izquierda-negativo no es una regla rígida, es sólo una práctica aceptada conocida como convención. Los escenarios individuales pueden establecer su propia convención. Pero si la pregunta no lo especifica, debes suponer que la dirección positiva va hacia la derecha. Si la línea de movimiento de la partícula es vertical, entonces la dirección positiva es hacia arriba.

    Modelización del desplazamiento, la velocidad y la aceleración de las partículas

    La definición de velocidad es el cambio de desplazamiento o posición con respecto al tiempo, es decir, es el índice de cambio de desplazamiento o posición.

    La definición de aceleración es la variación de la velocidad con respecto al tiempo, es decir, el índice de variación de la velocidad.

    ¿Tienes idea de cómo relaciona el cálculo estas propiedades?

    Pues bien, la forma de hallar la tasa de cambio de una partícula, es simplemente hallar su derivada respecto al tiempo. es decir

    \[Desplazamiento \xrightarrow{\frac{d}{dt}} Velocidad \xrightarrow{\frac{d}{dt} Aceleración\]

    Sí, así es, ¡la aceleración es la derivada de la velocidad con respecto al tiempo, y la velocidad es la derivada del desplazamiento con respecto al tiempo!

    Esto también significa que el desplazamiento es la integral de la velocidad respecto al tiempo, y la velocidad es la integral de la aceleración respecto al tiempo.

    \[Desplazamiento \xleftarrow{\int dt + x_0} Velocidad \xleftarrow{\int dt + v_0} Aceleración\]

    Al integrar la aceleración, la constante de integración es la velocidad inicial. Al integrar la velocidad, la constante de integración es la posición inicial.

    Veamos un par de ejemplos.

    (1 ) El desplazamiento de una partícula en el tiempo se modela como

    \[x(t) = t^2 + t\]

    Halla la velocidad y la aceleración de la partícula en función del tiempo.

    Solución:

    La velocidad de la partícula es la derivada de su desplazamiento respecto al tiempo. Por tanto

    \[v(t) = 2t + 1 \]

    La aceleración de la partícula es la derivada de su velocidad respecto al tiempo. Por tanto

    \[a(t) = 2\]

    (2) La aceleración de una partícula en el tiempo se modela como

    \[a(t) = t \]

    Halla la velocidad y el desplazamiento de la partícula en función del tiempo, dadas las condiciones iniciales \(v_0 = 1 \,m/s\) y \(x_0 = 2 \, m \).

    Solución:

    La velocidad de la partícula es la integral de su aceleración respecto al tiempo. Por tanto,

    \[\in{align} v(t) &= \int a(t) \, dt + C \\\\ &= \int t \, dt + v_0 \\\\ &= \frac{1}{2} t^2 + 1 \end{align} \]

    El desplazamiento de la partícula es la integral de su velocidad respecto al tiempo. Por tanto

    \[\begin{align} s(t) &= \int v(t) \, dt + C \\\\ &= \int \frac{1}{2}t^2 + 1 \, dt + x_0 \\\\ &= \frac{1}{6} t^3 + t + 2 \end{align} \]

    Ejemplos de modelización del movimiento de partículas

    Veamos algunos ejemplos más de Modelado del movimiento de partículas.

    (1 ) El desplazamiento rectilíneo de una partícula, en metros, puede modelizarse con el siguiente polinomio.

    \[s(t) = x^2 + 2x + 3\]

    (a) ¿Cuál es la función de la velocidad de la partícula en función del tiempo?

    (b) ¿Cuál es la aceleración de la partícula?

    (c ) ¿La velocidad de la partícula aumenta o disminuye?

    Solución:

    (a) La velocidad de la partícula no es más que la derivada de su desplazamiento respecto al tiempo.

    \[\begin{align} v(t) &= \frac{d s}{dt} \\\\ v(t) &= 2x + 2 \end{align} \]

    (b) La aceleración de la partícula es la derivada de su velocidad respecto al tiempo.

    \[\in{align} a(t) &= \frac{dv}{dt} \\\\ a(t) &= 2 \end{align}\]

    (c ) La velocidad de la partícula aumenta al tener una aceleración positiva.

    (2 ) La aceleración en línea recta de una partícula, en metros, puede modelarse con el siguiente polinomio.

    \[ a(t) = 4t + 7 \]

    La partícula tiene unas condiciones iniciales \(x_0=2\,m\) y \(v_0=3\,m/s\)

    (a) ¿Cuál es la función de la velocidad de la partícula en función del tiempo?

    (b) ¿Cuál es el desplazamiento de la partícula en el tiempo \(t = 4\,s\)

    Solución:

    (a) La velocidad de la partícula no es más que la integral de su aceleración respecto al tiempo.

    \[ \begin{align} v(t) &= \int a(t)\,dt+C \\\\ &= \int 4t+7\,dt + v_0 \\\\ &= 2t^2 + 7t + 3 \end{align}\]

    (b ) El desplazamiento de la partícula no es más que la integral de su velocidad respecto al tiempo.

    \[ \begin{align} s(t) &= \int v(t)\,dt + C \\\\ &= \int 2t^2 + 7t + 3 \,dt + x_0 \\\\ &= \frac{2}{3}t^3 + \frac{7}{2}t^2 + 3t + 2 \end{align}\]

    (3 ) La velocidad de una partícula en \(m/s\) se modela como la siguiente función del tiempo.

    \[v(t) = t^2 -3t + 4\]

    ¿Qué distancia recorre la partícula durante el intervalo de tiempo \(t=2\,s\) a \(t=4\,s\)?

    Solución:

    Para hallar el desplazamiento de la partícula a lo largo del intervalo, halla la integral definida respecto al tiempo de la velocidad a lo largo de dicho intervalo.

    \[\begin{align} s &= \int_2^4 v(t)\,dt \\\\ &= \int_2^4 t^2 -3t + 4 \,dt \\\\ &= \left[ \frac{1}{3}t^3 - \frac{3}{2}t^2 + 4t \right]_2^4 \\\\ &= \left( \frac{1}{3}4^3 - \frac{3}{2}4^2 + 4\cdot 4 \right) - \left( \frac{1}{3}2^3 - \frac{3}{2}2^2 + 4\cdot2\right) \\\\ &= 8.67\, m \end{align} \]

    (4) La siguiente gráfica muestra la velocidad de una partícula a lo largo del tiempo. Su posición inicial es \(x = 2\,m\).

    Modelización del movimiento de partículas, gráfico que muestra la velocidad de una partícula como 2 m/s durante dos segundos, 3 m/s durante dos segundos y 1 m/s durante dos segundos, studysmarterFig. 5. Gráfica de la velocidad de la partícula en el tiempo.

    (a) ¿Cuál es el desplazamiento total de la partícula después de \(6\,s\)?

    (b) ¿Cuál es la posición de la partícula después de \(4\,s\)?

    Solución:

    (a) El desplazamiento de la velocidad es su integral respecto al tiempo, desgraciadamente, la pregunta no proporciona la velocidad como una función en función del tiempo que pueda integrarse.

    Al calcular una integral definida, ¿qué magnitud física se está resolviendo? La respuesta es el área bajo la gráfica dentro del intervalo dado.

    En este caso, el intervalo es de \(0\,s\) a \(6\,s\). Por tanto, hallar el desplazamiento es un simple caso de hallar el área bajo la gráfica entre estos dos puntos en el tiempo.

    \A &= 2\cdot A &= 2\cdot 2 + 3 \cdot 2 + 1 \cdot 2 \\\\ &= 4 + 6 + 2 \\\\ &= 12 \end{align}\}]

    Por tanto, el desplazamiento total de la partícula es \(12\,m\).

    (b) De forma análoga a la parte (a), el área bajo la gráfica en el intervalo \(0\,s\) a \(4\,s\) es el desplazamiento de la partícula.

    \[\begin{align} A &= 2\cdot 2 + 3 \cdot 2 \\\\ &= 4 + 6 \\\\ &= 10 \end{align}\}]

    Por tanto, el desplazamiento de la partícula es \(10\,m\).

    Dado que la partícula comienza en la posición \(x=2\,m\), su posición en \(4\,s\) es

    \[\iniciar{alinear} x&=s-x_0 \\\\ &= 10-2 \\\\ &=8 \,m \final{alinear} \]

    Modelo de movimiento de partículas - Puntos clave

    • Modelizar el movimiento deuna partícul a es el proceso de describir el movimiento de un objeto discreto o "partícula" utilizando un lenguaje matemático.
    • La velocidad es el cambio de desplazamiento o posición con respecto al tiempo, en otras palabras, es el índice de cambio de desplazamiento o posición.
    • La aceleración es la variación de la velocidad con respecto al tiempo, es decir, el índice de variación de la velocidad.
    • La forma sencilla de hallar la tasa de cambio de una partícula, es simplemente hallar su derivada con respecto al tiempo, es decir, la aceleración es la derivada de la velocidad con respecto al tiempo, y la velocidad es la derivada del desplazamiento con respecto al tiempo.

      \[Desplazamiento \xrightarrow{\frac{d}{dt}} Velocidad \xrightarrow{\frac{d}{dt} Aceleración]

    • El desplazamiento es la integral de la velocidad con respecto al tiempo, y la velocidad es la integral de la aceleración con respecto al tiempo.

      \[Desplazamiento \xleftarrow{\int dt + x_0} Velocidad \xleftarrow{\int dt + v_0} Aceleración\]


    Modelado de movimiento de partículas Modelado de movimiento de partículas
    Aprende con 0 tarjetas de Modelado de movimiento de partículas en la aplicación StudySmarter gratis
    Regístrate con email

    ¿Ya tienes una cuenta? Iniciar sesión

    Preguntas frecuentes sobre Modelado de movimiento de partículas
    ¿Qué es el modelado de movimiento de partículas?
    El modelado de movimiento de partículas es el estudio matemático de cómo las partículas individuales se mueven bajo la influencia de fuerzas.
    ¿Para qué se utiliza el modelado de movimiento de partículas?
    Se utiliza para predecir y analizar el comportamiento de sistemas físicos en física, ingeniería y otras ciencias.
    ¿Qué herramientas matemáticas se usan en el modelado?
    Se utilizan ecuaciones diferenciales, cálculo vectorial y métodos numéricos para resolver problemas complejos.
    ¿Por qué es importante aprender modelado de movimiento de partículas?
    Es crucial para comprender fenómenos naturales y diseñar tecnologías en campos como la mecánica y la ingeniería civil.
    Guardar explicación

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 12 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.