El triángulo de Pascal es un triángulo que contiene coeficientes binomiales. La parte superior del triángulo comienza con el único número \(1\) y, a medida que bajamos por el triángulo, cada fila aumenta en un número.
El triángulo es también conocido como triángulo de Tartaglia, debido al matemático italiano Nicolo Fontana Tartaglia. Asimismo, se ha conocido por muchas generaciones antes de ellos, tiene diversos nombres en persa, chino, alemán e hindú.
Coeficientes binomiales
Los coeficientes binomiales son relevantes en el contexto de las expansiones binomiales. La fórmula general para una expansión binomial es:
\[(x+y)^n=\sum_{k=0}^{n} \begin{pmatrix} n\\ k \end{pmatrix} x^{n-k}y^k= \sum_{k=0}^{n} \begin{pmatrix} n\\ k \end{pmatrix} x^ky^{n-k}\]
En este caso, los coeficientes binomiales son los términos constantes que se escriben así:
\[\begin{pmatrix} n\\ k \end{pmatrix}\]
Estos coeficientes se pueden encontrar utilizando esta fórmula:
\[\begin{pmatrix} n\\ k \end{pmatrix}=\dfrac{n!}{k!(n-k)!}\]
O utilizando el Triángulo de Pascal:
Fig. 1: Coeficientes del triangulo de pascal.
El diagrama anterior muestra sólo las 8 primeras filas del Triángulo de Pascal, pero se puede continuar hasta el infinito. Cada fila corresponde a un número para \(n\), siendo la primera fila para cuando el binomio está elevado a una potencia \(n=0\).
Construcción del triángulo de Pascal
El triángulo de Pascal tiene un patrón específico que facilita su construcción, en lugar de recordarlo de memoria. Como habrás observado en el diagrama anterior, cada fila empieza y termina con 1 y el número de elementos de cada fila aumenta en 1 cada vez. El número de elementos \(m\) de cada fila viene dado por \(m = n + 1\). Así, la séptima fila \((n = 6)\) tiene 7 elementos \((1, 6, 15, 20, 15, 6, 1)\). Un elemento se puede encontrar sumando los dos elementos que están por encima de él.
Por ejemplo, para la tercera fila \(n = 2\), el \(2\) se obtiene sumando \(1 + 1\) de la fila superior:
Fig 2: Coeficientes del triangulo de pascal.
Para la cuarta fila \(n = 3\), los dos \(3\) provienen de sumar \(1 + 2\) de la fila de arriba:
Fig 3: Coeficientes del triangulo de pascal.
En la cuarta fila \(n = 3\) sumamos \(1 + 3\) para obtener \(4\):
Fig 4: Coeficientes del triangulo de pascal.
Este proceso se puede repetir tantas veces como sea necesario hasta llegar a la fila que necesitamos.
Suma de las filas del triángulo de Pascal
En cada fila, el número que se obtiene sumando todos los elementos de la fila viene dado por \(2^n\) .
Por ejemplo, para la fila \(3 (n = 2)\), la suma de los elementos es \(1 + 2 + 1 = 4\) o \(2^2 = 4\).
Esto es útil para ayudarnos a calcular la suma de los elementos para filas muy grandes, sin tener que construir el triángulo de Pascal:
Por ejemplo, sabemos que para la fila \(20 (n = 19)\), la suma sería \(2^{19}=524288\).
La sucesión de Fibonacci en el triángulo de Pascal
La serie de Fibonacci se puede encontrar en el triángulo de Pascal sumando números en diagonal:
Fig 5: Serie de Fibonacci al sumar los coeficientes del triangulo de Pascal.
Realización de la expansión binomial mediante el triángulo de Pascal
Como se ha mencionado anteriormente, el triángulo de Pascal es una forma útil de determinar los coeficientes del binomio en una expansión binomial. Con esto, se puede trabajar desde expresiones básicas al cuadrado hasta largos polinomios a exponentes mayores, como a la quinta.
Triangulo de Pascal: ejemplos
Veamos cómo realizar la expansión de la siguiente expresión: \((3x+1)^5\)
En primer lugar, tenemos que determinar \(n\), que es el exponente. Así que, en este caso: \(n=5\). Esto nos dice que tendremos que construir el triángulo de Pascal hasta la fila 6, donde \(n=5\).
Utilizando el método descrito anteriormente, obtenemos:
Fig 6: Desarrollo de un binomio a la potencia 5.
Esto significa que usaremos los coeficientes binomiales \(1, 5, 10, 10, 5\) y \(1\).
Introduciendo esto en la fórmula binomial, obtenemos:\[(3x+1)^5=1(3x)^5(1)^0+5(3x)^4(1)^1+10(3x)^3(1)^2+10(3x)^2(1)^3+5(3x)^1(1)^4+1(3x)^0(1)^5\]
Aprende más rápido con las 7 tarjetas sobre Triángulo de Pascal
Regístrate gratis para acceder a todas nuestras tarjetas.
Preguntas frecuentes sobre Triángulo de Pascal
¿Quién inventó el triángulo de Pascal?
No existe un inventor del triángulo de Pascal propiamente, pues este triángulo ya era conocido por chinos griegos e hindúes; sin embargo, fue Blaise Pascal el que introdujo su notación y desarrolló aplicaciones a las matemáticas con este objeto.
¿Cuántos números hay en cada fila del triángulo de pascal?
En cada fila hay una cantidad de números igual a la suma del exponente “n” más uno. Por esto, cuando hay un binomio al cuadrado, se obtienen tres términos.
¿Cómo se resuelve un binomio con el triángulo de Pascal?
Se deben multiplicar los términos a y b entre sí, por el coeficiente del triángulo; excepto, si este coeficiente está en la diagonal, pues en este caso solo se debe elevar a o b a la potencia n. Los términos se deben elevar a la potencia n hasta n=1, conforme se mueve de la parte externa del triángulo a la parte interna del mismo.
¿Cómo escribir el triángulo de Pascal?
El triángulo de Pascal tiene un patrón específico que facilita su construcción, en lugar de recordarlo de memoria:
Como habrás observado en el diagrama anterior, cada fila empieza y termina con 1 y el número de elementos de cada fila aumenta en 1 cada vez.
El número de elementos (m) de cada fila viene dado por m = n + 1.
Así, la séptima fila (n = 6) tiene 7 elementos (1, 6, 15, 20, 15, 6, 1).
Un elemento se puede encontrar sumando los dos elementos que están por encima de él.
¿Cómo te aseguras de que tu contenido sea preciso y confiable?
En StudySmarter, has creado una plataforma de aprendizaje que atiende a millones de estudiantes. Conoce a las personas que trabajan arduamente para ofrecer contenido basado en hechos y garantizar que esté verificado.
Proceso de creación de contenido:
Lily Hulatt
Especialista en Contenido Digital
Lily Hulatt es una especialista en contenido digital con más de tres años de experiencia en estrategia de contenido y diseño curricular. Obtuvo su doctorado en Literatura Inglesa en la Universidad de Durham en 2022, enseñó en el Departamento de Estudios Ingleses de la Universidad de Durham y ha contribuido a varias publicaciones. Lily se especializa en Literatura Inglesa, Lengua Inglesa, Historia y Filosofía.
Gabriel Freitas es un ingeniero en inteligencia artificial con una sólida experiencia en desarrollo de software, algoritmos de aprendizaje automático e IA generativa, incluidas aplicaciones de grandes modelos de lenguaje (LLM). Graduado en Ingeniería Eléctrica de la Universidad de São Paulo, actualmente cursa una maestría en Ingeniería Informática en la Universidad de Campinas, especializándose en temas de aprendizaje automático. Gabriel tiene una sólida formación en ingeniería de software y ha trabajado en proyectos que involucran visión por computadora, IA integrada y aplicaciones LLM.
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.