Saltar a un capítulo clave
Variables en un gráfico de dispersión
Cada punto de un gráfico de dispersión tiene unas coordenadas (x, y) que se relacionan con los valores de las dos variables. Si existe una conexión entre estos conjuntos de datos, se traza una línea de mejor ajuste para ofrecer una representación visual de la relación entre ellos. La relación entre estos conjuntos de datos se denomina Correlación.
Las variables de un gráfico de dispersión son independientes o dependientes. La variable independiente no se ve influida por nada y se representa en el eje de abscisas, mientras que la variable dependiente se ve afectada por la independiente y se representa en el eje de ordenadas.
El siguiente gráfico de dispersión muestra la relación entre las calificaciones que obtienen los alumnos en matemáticas y en ciencias físicas. Cada punto tiene una coordenada x que representa sus resultados en matemáticas y una coordenada y que representa sus resultados en física.
¿Qué es la correlación en los gráficos de dispersión?
La correlación es la relación entre dos conjuntos de datos o variables, que pretendemos determinar dibujando un gráfico de dispersión. Está relacionada con el coeficiente de correlación r, que mide la fuerza y la dirección de la relación lineal entre las dos variables.
Es importante comprender que las correlaciones sólo existen cuando hay un vínculo entre dos variables.
Los tres tipos de situaciones de correlación son
Correlación positiva
Una correlación positiva es cuando una variable aumenta, entonces la otra variable también aumentará. Los gráficos de dispersión con una correlación positiva tienen una pendiente positiva. Una correlación positiva perfecta se expresa como +1 y significa que las variables que se comparan siempre se moverán juntas en la misma dirección y porcentaje.
Cuanto más tiempo pases haciendo ejercicio, más calorías quemarás.
Correlación negativa
Una correlación negativa se produce cuando una variable disminuye y la otra aumenta. Los gráficos de dispersión con correlación negativa tienen pendiente negativa. Una correlación negativa perfecta se expresa como -1 y significa que las dos variables que se comparan siempre se moverán en direcciones opuestas.
Cuanto más tiempo pase una persona practicando Matemáticas, menos confusa se sentirá con sus temas.
Sin correlación
No hay correlación cuando no existe una relación clara entre dos variables. La no correlación se expresa como coeficiente de correlación 0.
Cuanto más té bebas, mayor será tu conocimiento de los gráficos de dispersión.
Fuerza de la correlación
La fuerza de la correlación depende de lo alineados que estén los puntos de datos, de si se mueven en sentido positivo o negativo y del valor del coeficiente de correlación (r). Estas correlaciones se describen como
Correlación fuerte
Una correlación fuerte se da cuando los puntos de datos del gráfico de dispersión están estrechamente alineados entre sí. Un coeficiente de correlación positiva fuerte tiene valores cercanos a +1, mientras que una r negativa fuerte tiene valores cercanos a -1.
Correlación débil o moderada
Una correlación débil o moderada se da cuando los puntos de datos del gráfico de dispersión están más dispersos. Los coeficientes de correlación débil tienen valores más próximos a 0.
¿Qué es la recta de regresión en los gráficos de dispersión?
La línea de regresión es una línea trazada a través de un gráfico de dispersión para expresar la correlación de los datos. Ofrece un esbozo de la relación entre las dos variables y te permite hacer predicciones sobre futuros puntos de datos. Debe trazarse de forma que pase por el centro de los puntos del gráfico de dispersión, con el mismo número de puntos a cada lado de la línea.
¿Cómo se describen los gráficos de dispersión?
Los gráficos de dispersión se describen o interpretan con la siguiente información: correlación, fuerza y valores atípicos.
Los valores atípicos son puntos del gráfico de dispersión que no se ajustan al patrón del conjunto de datos.
El gráfico siguiente muestra un ejemplo de valores atípicos en un gráfico de dispersión (puntos rojos).
El siguiente gráfico de dispersión muestra la relación entre el número de horas que un alumno dedica al estudio de las Matemáticas y las calificaciones que obtiene.
Este gráfico de dispersión podría interpretarse o describirse de la siguiente manera: La dirección de los puntos indica una correlación positiva, lo que significa que cuantas más horas estudia un alumno, más altas son sus notas. Los puntos están estrechamente alineados, lo que indica una fuerte correlación en la que es probable que los alumnos obtengan siempre notas más altas cuando estudian más. Por último, consta de valores atípicos que podrían deberse a la comprensión natural, la motivación o el interés general de los alumnos por la asignatura, es decir, algunos alumnos seguirán sacando notas más bajas cuando asistan a más clases porque no les gustan las Matemáticas.
Cómo dibujar un gráfico de dispersión
Un gráfico de dispersión se dibuja siguiendo los siguientes pasos:
Paso1 : Decide las dos variables que vas a comparar.
Paso2 : Recoge y tabula los datos de estas variables. La x / variable independiente se tabulará en la segunda fila y tus y / variables dependientes estarán en la tercera.
Paso3: Utiliza los datos recopilados para trazar los puntos.
Paso 4: Dibuja tu recta de regresión.
Gráficos de dispersión - Puntos clave
- Un gráfico de dispersión puede tener una correlación positiva, negativa o nula.
- Un coeficiente de correlación positivo fuerte tiene valores cercanos a +1, mientras que un r negativo fuerte tiene valores cercanos a -1.
- Una correlación débil o moderada se da cuando los puntos de datos del gráfico de dispersión están más dispersos. Los coeficientes de correlación débiles tienen valores más próximos a 0.
- La recta de regresión es una línea trazada a través de un gráfico de dispersión para expresar la correlación de los datos.
- Los gráficos de dispersión se interpretan o describen con la siguiente información: correlación, fuerza y valores atípicos.
Aprende con 1 tarjetas de Gráficos de dispersión en la aplicación StudySmarter gratis
¿Ya tienes una cuenta? Iniciar sesión
Preguntas frecuentes sobre Gráficos de dispersión
Acerca de StudySmarter
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.
Aprende más