Intervalo de confianza para la diferencia de dos medias

¿Es cierto que el precio medio de una taza de café es diferente según el tamaño de la ciudad en la que vives? Desde luego, parece razonable que el precio medio de una taza de café sea mayor en una ciudad grande que en una pequeña, pero ¿cómo saber si eso es realmente cierto? Los intervalos de confianza para la diferencia de dos medias son el camino a seguir para estar realmente seguro de tu respuesta. Así que resuelve tus problemas con el café, ¡sigue leyendo!

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Verdadero o falso: las condiciones que deben cumplirse para crear un intervalo de confianza para la diferencia de dos medias cambian en función de si conoces o no las desviaciones típicas de la población.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cómo se relacionan el margen de error y el intervalo de confianza para la diferencia de dos medias?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si en el intervalo de confianza de tu diferencia de dos medias hay cero, ¿qué conclusión puedes sacar?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supón que quieres saber si hay una diferencia en la inteligencia media entre los gemelos que nacieron primero y los gemelos que nacieron después. ¿Por qué no harías un intervalo de confianza para la diferencia de dos medias en este caso?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cómo se llama cuando la elección de un miembro del primer grupo de muestra coloca automáticamente a un miembro en el segundo grupo de muestra?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supón que quieres comparar la masa media de un grupo de adultos antes de que empiecen un régimen de ejercicio y compararla con la del mismo grupo de adultos después de que hayan seguido el régimen durante un año. ¿Qué tipo de intervalo de confianza construirías?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supón que quieres comparar la renta media de las personas que viven en grandes ciudades frente a las que viven en pueblos pequeños. ¿Qué tipo de intervalo de confianza construirías?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál de estas condiciones debe cumplirse para que puedas construir un intervalo de confianza para la diferencia de dos medias?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si conoces la desviación típica de la población y estás construyendo un intervalo de confianza para la diferencia de dos medias, ¿cuál es el estadístico de prueba correcto?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si no conoces la desviación típica de la población y estás construyendo un intervalo de confianza para la diferencia de dos medias, ¿cuál es el estadístico de prueba correcto?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si construyes un intervalo de confianza \(95\%\) para la diferencia de dos medias, ¿cuál de las siguientes es una conclusión correcta?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Verdadero o falso: las condiciones que deben cumplirse para crear un intervalo de confianza para la diferencia de dos medias cambian en función de si conoces o no las desviaciones típicas de la población.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cómo se relacionan el margen de error y el intervalo de confianza para la diferencia de dos medias?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si en el intervalo de confianza de tu diferencia de dos medias hay cero, ¿qué conclusión puedes sacar?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supón que quieres saber si hay una diferencia en la inteligencia media entre los gemelos que nacieron primero y los gemelos que nacieron después. ¿Por qué no harías un intervalo de confianza para la diferencia de dos medias en este caso?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cómo se llama cuando la elección de un miembro del primer grupo de muestra coloca automáticamente a un miembro en el segundo grupo de muestra?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supón que quieres comparar la masa media de un grupo de adultos antes de que empiecen un régimen de ejercicio y compararla con la del mismo grupo de adultos después de que hayan seguido el régimen durante un año. ¿Qué tipo de intervalo de confianza construirías?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supón que quieres comparar la renta media de las personas que viven en grandes ciudades frente a las que viven en pueblos pequeños. ¿Qué tipo de intervalo de confianza construirías?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál de estas condiciones debe cumplirse para que puedas construir un intervalo de confianza para la diferencia de dos medias?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si conoces la desviación típica de la población y estás construyendo un intervalo de confianza para la diferencia de dos medias, ¿cuál es el estadístico de prueba correcto?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si no conoces la desviación típica de la población y estás construyendo un intervalo de confianza para la diferencia de dos medias, ¿cuál es el estadístico de prueba correcto?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si construyes un intervalo de confianza \(95\%\) para la diferencia de dos medias, ¿cuál de las siguientes es una conclusión correcta?

Mostrar respuesta

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Intervalo de confianza para la diferencia de dos medias?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Intervalo de confianza para la diferencia de dos medias

  • Tiempo de lectura de 16 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Intervalos de confianza para la diferencia de dos medias taza de café en la que la espuma parece una cara feliz StudySmarterFig. 1: ¡Incluso tu café quiere que seas feliz!

    Intervalo de confianza para la diferencia de dos medias con desviaciones típicas conocidas

    Si sólo te interesara el precio medio del café en una ciudad, podrías hacer un intervalo de confianza para una media poblacional. En ese caso, para hacer un intervalo de confianza adecuado necesitarías que:

    • El tamaño de la muestra sea suficientemente grande (\(n \ge 30\)) o la distribución de la población sea aproximadamente normal.

    • La muestra sea aleatoria o sea razonable suponer que es representativa de la población mayor.

    Si conoces la desviación típica de la población, \ (\sigma), el intervalo de confianza viene dado por

    \[ \bar{x} \pm (z \text{valor crítico})\left(\frac{\sigma}{\sqrt{n}}\right)\}].

    donde \(\bar{x}\) es la media muestral.

    Pero aquí tienes dos ciudades distintas y quieres comparar el precio medio del café, así que ¿cómo construyes el intervalo de confianza? Empecemos por enumerar algunas de las notaciones que se utilizan en adelante.

    En primer lugar, la notación de población:

    Población \(1\)

    Población \(2\)

    Población Media

    \( \mu_1\)

    \( \mu_2\)

    Desviación típica de la población

    \(sigma 1)

    \(sigma_2)

    Y ahora las muestras:

    Muestra de Población \(1\\)

    Muestra de la población (2)

    Tamaño de la muestra

    \(n_1\)

    \(n_2\)

    Media de la muestra

    \(\bar{x}_1\)

    \(barra x 2)

    Desviación típica de la muestra

    \(s_1\)

    \(s_2\)

    Entonces, las condiciones para construir un intervalo de confianza para la diferencia de dos medias son:

    • Las muestras son independientes.

    • O el tamaño de la muestra es suficientemente grande (\(n_1 \ge 30\) y \(n_2 \ge 30\)) o la distribución de la población es aproximadamente normal.

    • Las muestras son aleatorias o es razonable suponer que las muestras son representativas de la población más amplia.

    Estas condiciones no cambian aunque no conozcas las desviaciones típicas de la población.

    Como las muestras son independientes y aleatorias, sabes que

    \[ \mu_{bar{x}_1 - \bar{x}_2} = \mu_1 - \mu_2\]

    y que

    \[ \sigma_{x_1 - x_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{sigma_2^2}{n_2} }.\]

    Entonces el intervalo de confianza para la diferencia de las dos medias poblacionales es

    \[\bar{x}_1 - \bar{x}_2 \pm (z \text{ valor crítico})\sqrt{\frac{\sigma_1^2}{n_1} +\frac{\sigma_2^2}{n_2} } .\]

    En general, no vas a saber cuáles son las desviaciones típicas de la población, pero veamos un ejemplo que ilustra el uso de las fórmulas.

    Haces una encuesta en \(40\) cafeterías de pueblos pequeños y \(49\) cafeterías de grandes ciudades, y descubres que el precio medio de una taza grande de café es \(3,75\$) y en las grandes ciudades es \(4,50\$). También sabes que la desviación típica de la población en las ciudades pequeñas es de \(1,20\), y en las grandes ciudades la desviación típica de la población de \(0,98\).

    Construye un intervalo de confianza \(99\%\) para la diferencia de sus dos medias, y saca conclusiones a partir de él.

    Solución:

    Es útil exponer la información que tienes. Llama a la población de la ciudad pequeña \(1\) y a la población de la ciudad grande \(2\). Entonces sabrás que

    \¾[ \begin{array}{lll} & n_1 = 40 & \bar{x}_1 = 3,75 & \sigma_1 = 1,20 ¾ & n_2 = 49 & \bar{x}_2 = 4,50 & \sigma_2 = 0,98 . \end{array}\]

    Sabes que el valor crítico (z) para un intervalo de confianza (99%) es (2,58). Entonces calcula el intervalo de confianza para la diferencia de medias,

    \(z {text}{valor crítico})\qrt{\frac{{sigma_1^2}{n_1}). +\frac{\sigma_2^2}{n_2} } \\ & \qquad = 3,75-4,50 \pm 2,58 \sqrt{\frac{(1,20)^2}{40} + frac {(0,98)^2} {49} } \\ y cuadrado = -0,75 pm 2,58 cuadrado = 0,036 + 0,0196 \\ y cuadrado = (-1,36, -0,14) .end

    ¿Qué puedes concluir de esto? En primer lugar, puedes concluir que el método utilizado para construir esta estimación de intervalo consigue captar la diferencia real en las medias poblacionales aproximadamente el \(99\%\) de las veces.

    Y lo que es más importante, puedes concluir con un \(99\%\) de confianza que la diferencia real en el precio medio de una taza grande de café está entre \(-$1,36\$) y \(-$0,14\$). Como ambos extremos del intervalo de confianza son negativos, puedes estimar que el precio medio de una taza grande de café es entre \(\$0 ,14\) y \ (\$1,36\) más bajo en un pueblo pequeño que en una gran ciudad.

    Observa que en el ejemplo anterior ambos extremos del intervalo de confianza eran negativos. ¿Qué ocurre si un extremo es negativo y el otro positivo? Eso implica que \(0\) está dentro del intervalo de confianza, por lo que, en otras palabras, sería plausible que no hubiera diferencia entre las dos medias.

    Intervalo de confianza para la diferencia de dos medias poblacionales independientes

    Si no conoces las desviaciones típicas de la población, pero sabes que tus muestras son independientes (es decir, que la elección de un miembro de la primera población no afecta a tu elección de un miembro de la segunda población), puedes calcular el intervalo de confianza mediante la fórmula

    \[\bar{x}_1 - \bar{x}_2 \pm (t \text{ valor crítico})\sqrt{\frac{s_1^2}{n_1} + frac {s_2^2} {n_2} } ,\]

    donde el grado de libertad para el valor crítico \(t\) se calcula mediante

    \[df = \frac{(V_1 + V_2)^2}{\dfrac{V_1^2}{n_1-1} + \dfrac{V_2^2}{n_2-1},\]

    y

    \[ V_1 = \frac{s_1^2}{n_1}, \quad V_2 = \frac{s_2^2}{n_2} .\]

    Ésta es la misma forma en que calcularías el grado de libertad para una prueba de dos muestras \(t\)-.

    Veamos un ejemplo de aplicación de estas fórmulas y extracción de conclusiones.

    Haces una encuesta en \(40\) cafeterías de pueblos pequeños y \(49\) cafeterías de grandes ciudades, y descubres que el precio medio de una taza grande de café es \(3,75\$) y en las grandes ciudades es \(4,50\$). También sabes que la desviación típica muestral en las ciudades pequeñas es \(1,00\\), y en las grandes ciudades la desviación típica muestral de \(0,70\).

    Construye un intervalo de confianza \(99\%\) para la diferencia de sus dos medias, y saca conclusiones a partir de él.

    Solución:

    Primero hallar \(V_1\) y \(V_2\),

    \[ \begin{align} V_1 &= \frac{s_1^2}{n_1} \\ &= \frac{1^2}{40} \\ &= 0,025 \end{align} \]

    y

    \[ \frac{1^2}{40} V_2 &= \frac{s_2^2}{n_2} \\ &= \frac{0,70^2}{49} \\ &= 0,01, \end{align} \]

    así que

    \df &= \frac{(V_1 + V_2)^2} {dfrac{V_1^2} {n_1-1} + \dfrac{V_2^2} {n_2-1} } \\ ¾ &= ¾frac {(0,025 + 0,01 )^2} {¾dfrac {0,025^2} {40-1} + ¾dfrac {0,01^2} {49-1} \\ &=\frac{0.001225}{\dfrac{0.000625}{39} + \dfrac {0,0001} {48} } \\ &aproximadamente 67,6 . \end{align}\]

    La mayoría de las tablas \(t\)-no tendrán \(df = 68\) en ellas, sin embargo una calculadora te dará el valor \(t\)-crítico apropiado de \(2,65\).

    A continuación, calcula el intervalo de confianza para la diferencia de las dos medias poblacionales,

    \[\begin{align} \bar{x}_1 - \bar{x}_2 & \pm (t \text{ valor crítico})\sqrt{\frac{s_1^2}{n_1} + frac {s_2^2} {n_2} } \\ &\quad = 3,75-4,50 \pm (2,65)\sqrt{\frac{1^2}{40} + frac{0,75^2}{49} } \\ ¾cuadrado ¾aprox -0,75 ¾pm 0,51 ¾cuadrado = (-1,26, -0,24). \end{align}\]

    Por tanto, puedes concluir con \(99\%\) de confianza que la diferencia real en el precio medio de una taza grande de café está entre \(-$1,26\) y \(-$0,24\). Como ambos extremos del intervalo de confianza son negativos, puedes estimar que el precio medio de una taza grande de café es entre \(\$0 ,24\) y \ (\$1,26\) más bajo en un pueblo pequeño que en una gran ciudad.

    ¿En qué se diferencia el margen de error del intervalo de confianza?

    Margen de error de un intervalo de confianza para la diferencia entre dos medias poblacionales

    En realidad, el margen de error se define como la mitad de la anchura del intervalo de confianza. Así que en el caso de la diferencia entre dos medias, cuando no conoces las desviaciones típicas de la población, el margen de error viene dado por

    \[ \text{margen de error} = (t \text{valor crítico})\sqrt{\frac{s_1^2}{n_1} +\frac{s_2^2}{n_2} } }. \]

    Por otra parte, si conoces las desviaciones típicas de la población, el margen de error es

    \margen de error = (z {valor crítico}){cuadrado} {frac {sigma_1^2}{n_1}) +\frac{\sigma_2^2}{n_2} } . \]

    En cualquier caso, es justo la mitad de la anchura del intervalo de confianza.

    Fórmula del intervalo de confianza para la diferencia entre dos medias

    Ser capaz de utilizar la fórmula es, sin duda, una parte de la elaboración de un intervalo de confianza. Igual de importante es ser capaz de utilizar la información que te da la fórmula para sacar conclusiones. De hecho, ¡la mayoría de los programas estadísticos toman los datos que les das y hacen los cálculos por ti!

    Al observar el intervalo de confianza para la diferencia entre dos medias, pueden ocurrir tres cosas:

    • Ambos extremos del intervalo son negativos.

    • Ambos extremos del intervalo son positivos.

    • Uno de los extremos es negativo y el otro positivo.

    Ya has visto un ejemplo de conclusión cuando ambos puntos finales son negativos, así que veamos un ejemplo de la conclusión que puedes sacar en cada uno de los otros dos casos.

    Supongamos que tienes un nuevo tratamiento médico y quieres observar la media de días hasta la recuperación de las personas que reciben el tratamiento frente a las que no lo reciben. Las personas fueron asignadas aleatoriamente al grupo de tratamiento o a un grupo placebo. Define

    • Población \(1\) - personas que reciben el tratamiento; y
    • Población \(2\) - personas que reciben un placebo.

    Supongamos que el intervalo de confianza \(90\%\) para la diferencia de las dos medias, \(\bar{x}_1 - \bar{x}_2 \) es \( (14,7, 23,1)\). ¿Qué conclusión puedes sacar sobre si el tratamiento es mejor o peor que el placebo?

    Solución:

    Aquí ambos puntos finales del intervalo de confianza son positivos. Esto significa que crees que \(\mu_1 - \mu_2 > 0\), o en otras palabras, que el tiempo medio de recuperación de las personas que recibieron el tratamiento médico es mayor que el tiempo medio de recuperación de las personas que recibieron el placebo, y que de hecho el tiempo de recuperación de las personas que reciben el tratamiento médico es mayor en al menos \(14\) días. Desgraciadamente, esto implicaría que el nuevo tratamiento médico no ayuda a las personas a recuperarse más rápidamente.

    A continuación, el caso en que un punto final es negativo y otro positivo.

    Utilicemos exactamente la misma configuración que en el ejemplo anterior. Así que

    • Población \(1\) - personas que reciben el tratamiento; y
    • Población \(2\) - personas que reciben un placebo.

    Supongamos que el intervalo de confianza \(90\%\) para la diferencia entre las dos medias, \(\bar{x}_1 - \bar{x}_2 \) es \( (-3,4, 4,3)\). ¿Qué conclusión puedes sacar sobre si el tratamiento es mejor o peor que el placebo?

    Solución:

    Aquí se incluye el cero en el intervalo de confianza. Eso implica que es verosímil que \(\mu_1\) y \(\mu_2\) sean iguales. En otras palabras, es plausible que el nuevo tratamiento médico no fuera ni más ni menos eficaz que el placebo. Así que puedes decir que, aunque el nuevo tratamiento médico probablemente no ayudó, tampoco fue probablemente peor que el placebo.

    Siempre es útil ver otro ejemplo.

    Ejemplo de intervalo de confianza para la diferencia entre dos medias poblacionales

    Veamos algo que al principio podrías confundir con un problema de diferencia entre dos medias.

    Es habitual que a los alumnos de una clase se les haga un examen previo, luego aprendan el material y después hagan un examen real. Esto se hace para medir (con suerte) cuánto están aprendiendo los alumnos en la clase. ¿Es éste realmente un caso en el que construirías un intervalo de confianza para la diferencia entre las dos medias poblacionales?

    Solución:

    Recuerda que una de las condiciones para construir un intervalo de confianza para la diferencia de dos medias es que tus muestras sean independientes. En este ejemplo, un alumno que realiza automáticamente el pre-test se incluye en el grupo que realiza el test real. Definitivamente, ¡estas muestras no son independientes!

    Así que, aunque parezca una pregunta de diferencia de dos medias, en realidad tendrás que fijarte en las personas de la clase y en la diferencia de sus puntuaciones en el examen y hacer un intervalo de confianza para una media poblacional.

    El hecho de que aparezca la palabra "diferencia" no implica que tengas que hacer un intervalo de confianza para la diferencia entre dos medias. Se consideran muestras pareadas emparejadas, y un intervalo de confianza estándar para una media poblacional es la forma de abordar este problema.

    A continuación, veamos un ejemplo en el que las muestras son independientes.

    Supongamos que quieres saber si el color de la taza de café influye en la opinión de la gente sobre el sabor. Consigues \(24\) personas y las asignas aleatoriamente a uno de los dos grupos de tratamiento: una taza de café blanca o una taza de café naranja.

    Intervalos de confianza para la diferencia de dos medias café en tazas naranjas StudySmarter¿Es de algún modo mejor el café en una taza naranja?

    A ambos grupos se les dio exactamente el mismo café y se les pidió que valoraran el sabor en una escala de \(0\) a \(100\). Los resultados figuran en la tabla siguiente.

    MuestraTamaño de la muestraValoración media de la calidadDesviación típica de la muestra
    Muestra 1: taza de café blanca\(n_1 = 12\)\(\bar{x}_1 = 50,35\)\(s_1 = 20.17\)
    Muestra 2: taza de café naranja\(n_2 = 12\)\(\bar{x}_2= 61,48\)\(s_2 = 16.69\)

    ¿Puedes concluir que el color de la taza influye en la valoración media de la calidad del café?

    Solución:

    Primero comprobemos que se cumplen todas las condiciones para construir un intervalo de confianza para la diferencia de dos medias. Sin duda, las muestras son independientes y se han seleccionado al azar, pero el tamaño de la muestra es inferior a \(30\). Eso significa que tendrás que suponer que las distribuciones de las dos calificaciones de calidad son aproximadamente normales. No es descabellado suponerlo, pero habrá que mencionarlo cuando llegues a una conclusión.

    A continuación tendrás que calcular los grados de libertad. Aquí

    \[ \begin{align} V_1 &= \frac{s_1^2}{n_1} |= \frac{(20,17)^2}{12} \\ y aproximadamente 33,9, fin. \]

    y

    \V_2 &= \frac {20,17 ^2} {12} V_2 &= \frac{s_2^2}{n_2} \\ V_2 &= \frac{(16,69)^2}{12} \\ &&aproximadamente 23,2, \end{align}\}]

    así que

    \df &= \frac{(33,9 + 23,2)^2} {{dfrac{(33,9)^2} {12-1} + \dfrac{(23,2)^2} {12-1} } \\ &= \frac{3260,41}{\dfrac{1149,21}{11} + \dfrac{538,23}{11} } \\ &&aproximadamente 21,25 . \end{align}\]

    No se dio un nivel de confianza, pero es habitual utilizar un nivel \(95\%). Por tanto, el valor crítico \(t\) sería \(2,08\).

    A continuación, construye el intervalo de confianza,

    \[ \begin{align} \bar{x}_1 - \bar{x}_2 &\pm (t \text{ valor crítico})\sqrt{\frac{s_1^2}{n_1} + frac {s_2^2} {n_2} } \\ &\quad = 50.35 - 61.49 \pm 2.08\sqrt{\frac{(20.17)^2}{12} +\frac{(16.69)^2}{12} } \\ & & &cuadrado = (-26,85, 4,67).end

    Así que, suponiendo que las distribuciones de las dos valoraciones de calidad sean aproximadamente normales, puedes concluir con \(95\%\) de confianza que la diferencia real en la valoración media está entre \(-26,85\) y \(4,67\). Como el cero está en el intervalo de confianza, es plausible concluir que no hay diferencia en la valoración media de la escala de sabor entre la taza blanca y la taza naranja.

    Intervalo de confianza para la diferencia de dos medias - Aspectos clave

    • Las condiciones para construir un intervalo de confianza para la diferencia de dos medias son:
      • Las muestras son independientes.

      • O bien el tamaño de la muestra es suficientemente grande (\(n_1 \ge 30\) y \(n_2 \ge 30\)) o bien la distribución de la población es aproximadamente normal.

      • Las muestras son aleatorias o es razonable suponer que las muestras son representativas de la población total.

    • Si conoces las desviaciones típicas de la población, la fórmula del intervalo de confianza para la diferencia de las dos medias es

      \[\bar{x}_1 - \bar{x}_2 \pm (z \text{ valor crítico})\sqrt{\frac{\sigma_1^2}{n_1} +\frac{\sigma_2^2}{n_2} } ,\]donde \( \bar{x}_1\) es la media de la muestra \(1\), \(\bar{x}_2\) es la media de la muestra \(2\), \(\sigma_1\) es la desviación típica de la población \(1\), y \(\sigma_2\) es la desviación típica de la población \(2\).

    • El grado de libertad de un intervalo de confianza para la diferencia de dos medias se calcula mediante

      \[df = \frac{(V_1 + V_2)^2}{\dfrac{V_1^2}{n_1-1} + \dfrac{V_2^2}{n_2-1},\}].

      donde \(n_1\) y \(n_2\) son los tamaños de las muestras, \(s_1\) y \(s_2\) son las desviaciones típicas de las muestras, y

      \[ V_1 = \frac{s_1^2}{n_1}, \quad V_2 = \frac{s_2^2}{n_2} .\]

    • Si no conoces la desviación típica de la población, la fórmula del intervalo de confianza para la diferencia de dos medias es

      \[\bar{x}_1 - \bar{x}_2 \pm (t \text{ valor crítico})\sqrt{\frac{s_1^2}{n_1} + frac {s_2^2} {n_2} } ,\]donde \ (n_1\) y \(n_2\) son los tamaños de las muestras, \(s_1\) y \(s_2) son las desviaciones típicas de las muestras, y \(\bar{x_1}\) y \(\bar{x}_2\) son las medias muestrales.

    Intervalo de confianza para la diferencia de dos medias Intervalo de confianza para la diferencia de dos medias
    Aprende con 11 tarjetas de Intervalo de confianza para la diferencia de dos medias en la aplicación StudySmarter gratis
    Regístrate con email

    ¿Ya tienes una cuenta? Iniciar sesión

    Preguntas frecuentes sobre Intervalo de confianza para la diferencia de dos medias
    ¿Qué es un intervalo de confianza para la diferencia de dos medias?
    Un intervalo de confianza para la diferencia de dos medias es un rango estimado que probablemente contiene la diferencia real entre las dos medias poblacionales.
    ¿Cómo se calcula el intervalo de confianza para la diferencia de dos medias?
    Para calcular el intervalo de confianza para la diferencia de dos medias, se utiliza la fórmula del intervalo de confianza empleando las varianzas y las medias muestrales.
    ¿Para qué sirve el intervalo de confianza para la diferencia de dos medias?
    El intervalo de confianza para la diferencia de dos medias sirve para estimar la significancia de la diferencia entre dos grupos, evaluando si dicha diferencia es estadísticamente significativa.
    ¿Qué significa si el intervalo de confianza incluye el cero?
    Si el intervalo de confianza incluye el cero, sugiere que no hay una diferencia estadísticamente significativa entre las dos medias.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    Verdadero o falso: las condiciones que deben cumplirse para crear un intervalo de confianza para la diferencia de dos medias cambian en función de si conoces o no las desviaciones típicas de la población.

    ¿Cómo se relacionan el margen de error y el intervalo de confianza para la diferencia de dos medias?

    Si en el intervalo de confianza de tu diferencia de dos medias hay cero, ¿qué conclusión puedes sacar?

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 16 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.