Regla Empírica

Supón que tienes un conjunto de datos que se distribuye aproximadamente con normalidad. Supón también que conoces la desviación típica del conjunto de datos. ¿Hay mucho que puedas discernir sobre los datos a partir de esta información? Pues, de hecho, hay bastante, gracias a la regla empírica.

Pruéablo tú mismo

Scan and solve every subject with AI

Try our homework helper for free Homework Helper
Avatar

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Regla Empírica

  • Tiempo de lectura de 7 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Sign up for free to save, edit & create flashcards.
Guardar explicación Guardar explicación
  • Fact Checked Content
  • reading time7 min
Tarjetas de estudio
Tarjetas de estudio
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time7 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Guardar explicación Guardar explicación

Saltar a un capítulo clave

    Reproducir como pódcast 12 minutos

    ¡Gracias por tu interés en el aprendizaje por audio!

    Esta función aún no está lista, pero nos encantaría saber por qué prefieres el aprendizaje por audio.

    ¿Por qué prefieres el aprendizaje por audio? (opcional)

    Enviar comentarios
    Reproducir como pódcast 12 minutos

    La regla empírica puede utilizarse para juzgar la probabilidad de ciertos valores en un conjunto de datos, así como para comprobar si hay valores atípicos en tu conjunto de datos y mucho más. ¿Qué es la regla empírica y cómo se relaciona con las distribuciones normales y las desviaciones típicas?

    Definición de la regla empírica

    La regla empírica recibe varios nombres, a veces se denomina regla del \(95 \%\), regla de los tres sigmas o regla del \(68\)-\(95\)-\(99,7\).

    Suele denominarse regla empírica, ya que es una regla basada en muchas observaciones de conjuntos de datos, no una prueba matemática lógica o definitiva.

    La regla empírica es una regla estadística basada en observaciones que muestran que casi todos los datos de una distribución normal de datos se sitúan dentro de las tres desviaciones típicas de la media.

    ¿De dónde vienen los otros nombres? Bueno, hay aún más cosas que la regla empírica puede decirte, y las pistas están en los nombres. Se trata de los porcentajes y la desviación típica.

    Porcentajes de la regla empírica

    Como ya hemos dicho, uno de los nombres de la regla empírica es regla \ (68\)-\(95\)-\(99,7\). En realidad, este nombre es bastante revelador cuando examinamos la regla empírica en su totalidad. Dice así

    Para un conjunto de datos distribuidos normalmente, aproximadamente \(68\%\) de las observaciones se sitúan dentro de una desviación típica de la media, aproximadamente \(95\%\) de las observaciones se sitúan dentro de dos desviaciones típicas de la media , y aproximadamente \(99,7\%\) de las observaciones se sitúan dentro de tres desviaciones típicas de la media.

    \(68\%\), \(95\%\), \(99,7\%\), ¿lo pillas?

    Si recuerdas esos tres porcentajes, podrás utilizarlos para inferir todo tipo de conjuntos de datos con distribución normal.

    Pero espera un momento, a veces también se llama regla de los tres sigmas, ¿a qué viene eso?

    Bueno, el símbolo de la desviación típica es sigma, \(\sigma\). A veces se llama regla de los tres sigmas porque afirma que casi todas las observaciones se sitúan a tres sigmas de la media.

    Es una convención habitual considerar atípicas las observaciones que se sitúan fuera de esas tres sigmas . Esto significa que no son observaciones típicamente esperadas, y no son indicativas de la tendencia general. En algunas aplicaciones, el listón de lo que se considera un valor atípico puede estar explícitamente establecido en otra cosa, pero tres sigmas es una buena regla general.

    Veamos qué aspecto tiene todo esto puesto en un gráfico.

    Gráfico de la distribución normal con regla empírica

    Tomemos como ejemplo la siguiente distribución normal con una media de \(m\) y una desviación típica de \(\sigma\).

    La regla empírica Gráfico simple de distribución normal StudySmarterFig. 1. Curva de distribución normal .

    Es posible dividirla según la regla empírica.

    La regla empírica Un gráfico de distribución normal dividido según la regla empírica StudySmarterFig. 2. La regla empírica.

    Esta representación gráfica demuestra realmente las principales conclusiones que podemos sacar de la regla empírica. Está muy claro que prácticamente todas las observaciones se sitúan dentro de las tres desviaciones típicas de la media. Muy de vez en cuando puede haber valores atípicos, pero son extremadamente raros.

    La mayor parte se encuentra claramente entre \(-\sigma\) y \(\sigma\), tal como establece la regla empírica.

    Puede que estés pensando: "¡Genial, esta regla parece útil, voy a utilizarla todo el tiempo! Pero ten cuidado. La regla empírica sólo es válida para los datos que se distribuyen normalmente.

    Ejemplos de regla empírica

    Veamos algunos ejemplos para ver cómo podemos poner todo esto en práctica.

    (1) Se miden las estaturas de todas las alumnas de una clase. Se comprueba que los datos tienen una distribución aproximadamente normal, con una altura media de 1,5 m y una desviación típica de 1,2. Hay 12 alumnas en la clase. En la clase hay 12 alumnas.

    ( a) Utilizando la regla empírica, ¿cuántas de las alumnas están aproximadamente entre \(1,65 m,2) y \(1,65 m,4)?

    ( b) Utilizando la regla empírica, ¿cuántos alumnos están aproximadamente entre \(1,5 m,8 m) y \(1,5 m)?

    (c) Un alumno tiene una altura de \(1,5m,9m), ¿puede considerarse un caso atípico?

    Solución:

    (a ) \(5ft\,4\) es la media más una desviación típica. La regla empírica establece que \(68\%\) de las observaciones caerán dentro de una desviación típica de la media. Como la pregunta sólo se refiere a la mitad superior de este intervalo, será \(34\%\). Por tanto,

    \[0,34 \cdot 12 = 4,08\]

    El número de alumnas de la clase con una estatura comprendida entre \(1,65 m,2\) y \(1,65 m,4\) es \(4\).

    (b ) \(4ft\,8\) es la media menos dos desviaciones típicas, y \(5ft\) es la media menos una desviación típica. Según la regla empírica, \(95\%\) de las observaciones caen dentro de dos desviaciones típicas de la media, y \(68\%\) de las observaciones caen dentro de una desviación típica de la media.

    Como la pregunta sólo se refiere a las mitades inferiores de estos intervalos, pasan a ser \(47,5\%\) y \(34\%\) respectivamente. El intervalo que buscamos es la diferencia entre estos dos.

    \[47.5\% - 34\% = 13.5\%\]

    Por tanto,

    \[0,135 \cdot 12 = 1,62\%]

    El número de alumnas de la clase con una estatura comprendida entre \(4ft\,8\) y \(5ft\) es \(1\).

    (c ) \(5ft\,9\) es más de \(3\) desviaciones típicas mayor que la media, por lo que esta alumna puede considerarse un valor atípico.


    (2 ) Un ecólogo registra anualmente la población de zorros de un bosque durante diez años. Comprueba que, por término medio, hay \(150\) zorros viviendo en el bosque en un año determinado de ese período, con una desviación típica de \(15\) zorros. Los datos tienen una distribución aproximadamente normal.

    ( a) Según la regla empírica, ¿qué intervalo de tamaño de la población cabría esperar a lo largo de los diez años?

    (b ) ¿Cuáles de los siguientes se considerarían valores poblacionales periféricos?

    \[ 100, \space 170, \space 110, \space 132 \]

    Respuesta:

    (a) Según la regla empírica, cualquier observación que no esté dentro de las tres desviaciones típicas de la media suele considerarse un valor atípico. Por tanto, nuestro rango es

    \[ \mu - 3\sigma < P < \mu + 3\sigma\]

    \[150 - 3 \cdot 15 < P < 150+ 3 \cdot 15\]

    \[150-45 < P < 150+45\]

    \[105 < P < 195\]

    (b ) \(100\) es el único que no está dentro de las tres desviaciones típicas de la media, por tanto es el único valor atípico.

    Regla empírica - Puntos clave

    • La regla empírica establece que, para conjuntos de datos distribuidos normalmente, \(68\%\) de las observaciones se sitúan dentro de una desviación típica de la media, \(95\%\) de las observaciones se sitúan dentro de dos desviaciones típicas de la media, y \(99,7\%\) de las observaciones se sitúan dentro de tres desviaciones típicas de la media.
    • También se conoce como regla \(68\%\)-\(95\%\)-\(99,7\%\), regla de los tres sigmas y regla \(95\%\).
    • Normalmente, cualquier observación que no esté dentro de las tres desviaciones típicas de la media puede considerarse un valor atípico.
    Aprende más rápido con las 0 tarjetas sobre Regla Empírica

    Regístrate gratis para acceder a todas nuestras tarjetas.

    Regla Empírica
    Preguntas frecuentes sobre Regla Empírica
    ¿Qué es la Regla Empírica en matemáticas?
    La Regla Empírica, también conocida como la Regla 68-95-99.7, describe cómo los datos se distribuyen en una curva normal.
    ¿Cómo se aplica la Regla Empírica?
    La regla se aplica indicando que el 68% de los datos está dentro de una desviación estándar de la media, el 95% dentro de dos, y el 99.7% dentro de tres.
    ¿Para qué sirve la Regla Empírica?
    Sirve para realizar estimaciones rápidas y entender la distribución de datos en estudios estadísticos y probabilísticos.
    ¿Cuál es un ejemplo de la Regla Empírica?
    Un ejemplo es que si la media de los resultados de un examen es 70 y la desviación estándar es 5, entonces aproximadamente el 95% de los estudiantes tendrán puntuaciones entre 60 y 80.
    Guardar explicación
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 7 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    Únete a más de 30 millones de estudiantes que aprenden con nuestra aplicación gratuita Vaia.

    La primera plataforma de aprendizaje con todas las herramientas y materiales de estudio que necesitas.

    Intent Image
    • Edición de notas
    • Tarjetas de memoria
    • Asistente de IA
    • Explicaciones
    • Exámenes simulados