Área de los Círculos

El círculo es una de las formas más comunes. Tanto si nos fijamos en las líneas de órbita de los planetas en el sistema solar, como en el funcionamiento simple pero eficaz de las ruedas, o incluso en las moléculas a nivel molecular, ¡el círculo sigue apareciendo! Pero, ¿cómo calculamos el área de un círculo? El área de un círculo es la medida de la cantidad de espacio encerrado por el círculo.

Pruéablo tú mismo

Scan and solve every subject with AI

Try our homework helper for free Homework Helper
Avatar

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Área de los Círculos

  • Tiempo de lectura de 11 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Sign up for free to save, edit & create flashcards.
Guardar explicación Guardar explicación
  • Fact Checked Content
  • reading time11 min
Tarjetas de estudio
Tarjetas de estudio
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time11 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Guardar explicación Guardar explicación

Saltar a un capítulo clave

    Reproducir como pódcast 12 minutos

    ¡Gracias por tu interés en el aprendizaje por audio!

    Esta función aún no está lista, pero nos encantaría saber por qué prefieres el aprendizaje por audio.

    ¿Por qué prefieres el aprendizaje por audio? (opcional)

    Enviar comentarios
    Reproducir como pódcast 12 minutos

    Un círculo es una forma en la que todos los puntos que la delimitan son equidistantes de un único punto situado en el centro.

    Elementos de un círculo

    Antes de hablar del área de los círculos, repasemos las características únicas que definen su forma. La figura siguiente representa un círculo con centro O. Recuerda que, según la definición, todos los puntos situados en el límite del círculo son equidistantes (de igual distancia) de este punto central O. La distancia del centro del círculo a su límite se denomina radio, R.

    El diámetro, D, es la distancia de un extremo a otro de una circunferencia que pasa por el centro de la circunferencia. El diámetro es siempre el doble de la longitud del radio, por lo que si conocemos una de estas medidas, ¡también conocemos la otra! Una cuerda es una distancia de un extremo a otro de una circunferencia que, a diferencia del diámetro, no tiene por qué pasar por el punto central.

    Área de círculos círculo ilustración StudySmarterFigura 2. Ilustración de un círculo que muestra el diámetro, el radio y el centro del círculo.

    Fórmula del área del círculo

    Ahora que hemos repasado los elementos de un círculo, empecemos a hablar del área de un círculo. En primer lugar, empezaremos con una definición.

    El área de un círculo es el espacio que ocupa un círculo en una superficie o plano. Las medidas del área se escriben utilizando unidades cuadradas, como pies2 ym2.

    Para hallar el área de un círculo, utilizamos la fórmula

    \[Área = \pi \cdot r^2\]

    donde

    • \(A\\) es el área del círculo.
    • \(π\) (pi) es una constante matemática aproximadamente igual a 3,14159.
    • \(r\) es el radio del círculo, que es la distancia desde el centro del círculo a cualquier punto de su circunferencia.

    Para esta fórmula, es importante saber que \(\pi\) es pi. ¿Qué es pi? Es una constante representada por la letra griega \(\pi\) y su valor equivale aproximadamente a 3,14159.

    Pi es una constante matemática que se define como el cociente entre la circunferencia y el diámetro de un círculo.

    No tienes que memorizar el valor de pi porque la mayoría de las calculadoras tienen una tecla para introducirlo rápidamente, que se muestra como \(\pi\).

    Ejemplos de área de un círculo

    Utilicemos la fórmula del área en un ejemplo para ver cómo podemos aplicar este cálculo en la práctica.

    El radio de una circunferencia es de 8 m. Calcula su área.

    Solución:

    Primero, sustituimos el valor del radio en la fórmula del área del círculo.

    \[Área = \pi \cdot r^2 \rightarrow Área = \pi \cdot 8^2\]

    A continuación, elevamos al cuadrado el valor del radio y lo multiplicamos por pi para hallar el área en unidades cuadradas. Ten en cuenta que \(r^2\) no es igual a \(2 \cdot r\), sino que \(r^2\) es igual a \(r \cdot r\).

    \[Área = \pi \cdot 64 \rightarrow Área = 201,062 m^2\].

    ¿De dónde procede la fórmula del área de un círculo?

    El área de un círculo puede obtenerse cortando el círculo en trozos pequeños, como se indica a continuación.

    Fórmula del área del círculo, StudySmarter OriginalUn círculo se rompe en trozos para formar un rectángulo aproximado.

    Si rompemos el círculo en pequeños trozos triangulares (como los de una porción de pizza) y los juntamos de forma que se forme un rectángulo, puede que no parezca un rectángulo exacto, pero si cortamos el círculo en trozos lo suficientemente finos, entonces podremos aproximarlo a un rectángulo.

    Observa que hemos dividido las rodajas en dos partes iguales y las hemos coloreado de azul y amarillo para diferenciarlas. Por tanto, la longitud del rectángulo formado será la mitad de la circunferencia del círculo, que será \(\pi r\). Y la anchura será el tamaño de la rebanada, que es igual al radio del círculo, r.

    La razón por la que hemos hecho esto, es que tenemos la fórmula para calcular el área de un rectángulo: la longitud por la anchura. Así, tenemos

    \[A = (\pi r)r\]

    \[A = \pi r^2\]

    Verbalmente, el área de un círculo de radio r es igual a \(\pi\) x el radio2. Por tanto, las unidades de área son cm2,m2 o (unidad)2 para las unidades adecuadas.

    Cálculo del área de círculos con un diámetro

    Hemos visto la fórmula del área de un círculo, que utiliza el radio. Sin embargo, también podemos hallar el área de un círculo utilizando su diámetro. Para ello, dividimos la longitud del diámetro por 2, lo que nos da el valor del radio que debemos introducir en nuestra fórmula. (Recuerda que el diámetro de un círculo es el doble de la longitud de su radio). Veamos un ejemplo que utiliza este método.

    Un círculo tiene un diámetro de 12 metros. Halla el área del círculo.

    Solución:

    Empecemos por la fórmula del área de un círculo:

    \[Área = \pi \cdot r^2\]

    A partir de la fórmula, vemos que necesitamos el valor del radio. Para hallar el radio del círculo, dividimos el diámetro por 2, así

    \[r = \frac{12}{2} = 6 \space metros\]

    Ahora podemos introducir el valor del radio de 6 metros en la fórmula para resolver el área:

    \[\begin{align} Área = \pi \cdot 6^2 \ Área = 113,1 \space m^2 \end{align}\].

    Cálculo del área de círculos con circunferencia

    Además del área de un círculo, otra medida común y útil es su circunferencia.

    La circunferencia de un círculo es el perímetro o límite envolvente de la forma. Se mide en longitud, lo que significa que las unidades son metros, pies, pulgadas, etc.

    Veamos algunas fórmulas que relacionan la circunferencia con el radio y el diámetro del círculo:

    \frac {{Circunferencia}} {{Diámetro}} = \pi \rightarrow \text{Circunferencia} = \pi \cdot \text{Diámetro} \arrow \text{Circunferencia} = \pi \cdot 2 \cdot r\]

    Las fórmulas anteriores muestran que podemos multiplicar \(\pi\) por el diámetro de un círculo para calcular su circunferencia. Como el diámetro es el doble de la longitud del radio, podemos sustituirlo por \(2r\) si necesitamos modificar la ecuación de la circunferencia.

    Es posible que te pidan hallar el área de un círculo utilizando su circunferencia. Veamos un ejemplo.

    La circunferencia de un círculo es de 10 m. Calcula el área del círculo.

    Solución:

    En primer lugar, utilicemos la fórmula de la circunferencia para determinar el radio del círculo:

    \(\text{Circunferencia} = \pi \cdot 2 \cdot rr = \frac{text{Circunferencia}}{pi \cdot 2} r = \frac{10}{pi \cdot 2} r = \frac{5}{pi} m = 1,591 m\)

    Ahora que conocemos el radio, podemos utilizarlo para hallar el área del círculo:

    \(\frac{5}{pi}) m = 1,591 m \text{Área} = \pi \cdot r^2 \text{Área} = \pi \cdot 1,591^2 \text{Área} = 7,95 \space m^2 \end{align})

    Por tanto, el área del círculo con una circunferencia de 10 m es de 7,95m2.

    Área de semicírculos y cuartos de círculo con ejemplos

    También podemos analizar la forma del círculo en términos de mitades o cuartos. En este apartado hablaremos del área de los semicírculos (círculos cortados por la mitad) y de los cuartos de círculo (círculos cortados en cuartos).

    Área y circunferencia de un semicírculo

    Un semicírculo es una media circunferencia. Se forma dividiendo un círculo en dos mitades iguales, cortadas a lo largo de su diámetro. El área de un semicírculo puede escribirse como

    \(\text{Área de un semicírculo} = \frac{pi \cdot r^2}{2}\)

    Donde r es el radio del semicírculo

    Para hallar la circunferencia de un semicírculo, primero reducimos a la mitad la circunferencia de todo el círculo, y luego añadimos una longitud adicional que es igual al diámetro d. Esto se debe a que el perímetro o límite de un semicírculo debe incluir el diámetro para cerrar el arco. La fórmula de la circunferencia de un semicírculo es

    \[\text{Circunferencia de un semicírculo} = \frac{pi \cdot d}{2} + d\].

    Calcula el área y la circunferencia de un semicírculo que tiene un diámetro de 8 cm.

    Solución:

    Como el diámetro es de 8 cm, el radio es de 4 cm. Lo sabemos porque el diámetro de cualquier círculo es el doble de la longitud de su radio. Utilizando la fórmula del área de un semicírculo, obtenemos

    \(\text{Área} = \frac{pi \cdot r^2}{2} \flecha derecha \text{Área} = \frac{pi \cdot 4^2}{2} \(flecha derecha: texto {Área} = 25,133 cm^2)

    Para la circunferencia, introducimos el valor del diámetro en la fórmula:

    \(\text{Circunferencia} = \frac{pi \cdot d}{2} + Texto de circunferencia = Fracción de píxel en 8 {2} + 8 \rightarrow \text{Circunferencia} = 20,566 cm\)

    Área y circunferencia de un cuarto de círculo

    Un círculo puede dividirse en cuatro cuartos iguales, lo que da lugar a cuatro cuartos de círculo. Para calcular el área de un cuarto de círculo, la ecuación es la siguiente

    \[\text{Área de un cuarto de círculo} = \frac{pi \cdot r^2}{4}\].

    Para obtener la circunferencia de un cuarto de círculo, empezamos dividiendo por cuatro la circunferencia del círculo completo, pero eso sólo nos da la longitud del arco del cuarto de círculo. Entonces tenemos que añadir la longitud del radio dos veces para completar el límite del cuarto de círculo. Este cálculo puede realizarse mediante la siguiente ecuación:

    \(\text{Circunferencia de un cuarto de circunferencia} = \frac{pi \cdot d}{4} + 2r Flecha derecha Circunferencia de un cuarto de círculo = \frac{pi \cdot d}{4} + d\)

    Calcula el área y la circunferencia de un cuarto de círculo de 5 cm de radio.

    Solución:

    Para el área, obtenemos

    \text{Área} = \frac{pi \cdot r^2}{4} \flecha derecha \texto{Área} = \frac{pi \cdot 5^2} {4} \(flecha derecha: \text{Área} = 19,6 cm^2)

    La circunferencia puede calcularse como

    \(\text{Circunferencia} = \frac{pi \cdot d}{4} + d \rightarrow \text{Circunferencia} = \frac{pi \cdot 10}{4} + 10 \rightarrow \text{Circunferencia} = 17,9 cm\)

    Área de los círculos - Puntos clave

    • En un círculo, todos los puntos que delimitan la forma equidistan de un punto situado en su centro.
    • El segmento de recta que va desde el centro del círculo hasta un punto de su contorno es el radio.
    • El diámetro de un círculo es la distancia de un punto extremo del círculo a otro que pasa por el centro del círculo.
    • La circunferencia de un círculo es la longitud del arco del círculo.
    • El área de un círculo es \(\pi \cdot r^2\).
    • La circunferencia de un círculo es \(2 \cdot \pi \cdot r\).
    Preguntas frecuentes sobre Área de los Círculos
    ¿Cómo se calcula el área de un círculo?
    El área de un círculo se calcula utilizando la fórmula A = πr², donde 'r' es el radio del círculo.
    ¿Qué significa π (pi) en la fórmula del área del círculo?
    π (pi) es una constante matemática que representa la relación entre la circunferencia de un círculo y su diámetro, aproximadamente 3.14159.
    ¿Cómo encuentro el radio si tengo el área del círculo?
    Para encontrar el radio, usa la fórmula r = √(A/π), donde A es el área del círculo.
    ¿Cuál es la diferencia entre circunferencia y área de un círculo?
    La circunferencia es la distancia alrededor del círculo, mientras que el área es el espacio contenido dentro del círculo.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    ¿Qué forma tiene una rueda?

    ¿El diámetro de un círculo es el doble de su radio?

    ¿Cuál es la distancia de un extremo a otro de una circunferencia que no tiene que pasar necesariamente por el origen?

    Siguiente
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 11 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    Únete a más de 30 millones de estudiantes que aprenden con nuestra aplicación gratuita Vaia.

    La primera plataforma de aprendizaje con todas las herramientas y materiales de estudio que necesitas.

    Intent Image
    • Edición de notas
    • Tarjetas de memoria
    • Asistente de IA
    • Explicaciones
    • Exámenes simulados