Área de paralelogramos

¿Te has preguntado alguna vez qué tipo de forma representa una cometa? Una cometa suele tener cuatro lados, lo que la convierte en un tipo de cuadrilátero.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Área de paralelogramos?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Área de paralelogramos

  • Tiempo de lectura de 12 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Observa además que los lados superior izquierdo e inferior derecho de la cometa que se muestra a continuación son paralelos entre sí. Del mismo modo, los lados superior derecho e inferior izquierdo de esta cometa son paralelos entre sí.

    ¿Adivinas qué tipo de cuadrilátero puede ser? ¡Exacto! Es un paralelogramo.

    Supongamos que te dicen que tienes que hallar el área de esta cometa. Como se trata de un tipo de paralelogramo, podríamos utilizar una fórmula determinada para calcular el área de esta cometa.

    Ilustración de una cometa, StudySmarter Originals Ilustración de una cometa, StudySmarter Originals

    A lo largo de este artículo, conoceremos la fórmula del área de un paral elogramo y veremos algunos ejemplos prácticos en los que se aplica.

    Recapitulación sobre los paralelogramos

    Antes de entrar en el tema principal que nos ocupa, hagamos un rápido repaso sobre los paralelogramos para facilitarnos la entrada en este tema.

    Como su nombre indica, un paralelogramo tiene lados paralelos. Por tanto, podemos definir un paralelogramo como sigue.

    Un paralelogramo es un cuadrilátero con dos pares de lados opuestos paralelos. Un paralelogramo es un caso especial de cuadrilátero.

    Una figura plana de cuatro lados se conoce como cuadrilátero.

    La siguiente figura describe un paralelogramo de lados AB, BD, CD y AC.

    Ilustración de paralelogramo, Study Smarter Originals Ilustración de un paralelogramo, StudySmarter Originals

    Propiedades de los paralelogramos

    Volvamos a nuestro paralelogramo ABCD anterior. Veamos algunas propiedades que distinguen a esta forma.

    • Los lados opuestos de ABCD son paralelos. En este caso, AB es paralelo a CD y AC es paralelo a BD. Lo escribimos como AB // CD y AC // BD,

    • Los ángulos opuestos de ABCD son iguales. Aquí, ∠CAB = ∠CDB y ∠ACD = ∠ABD,

    • Las diagonales de un paralelogramo se bisecan en un punto, digamos M. Entonces, AM = MD y BM = MC. Esto se muestra a continuación,

    Propiedad de un diagrama de paralelogramo, StudySmarter Originals

    Propiedad de un paralelogramo , StudySmarter Originals

    • Cada diagonal de un paralelogramo divide al paralelogramo en dos triángulos congruentes. El triángulo CAB es congruente con el triángulo CDB y el triángulo ACD es congruente con el triángulo ABD.

    Tipos de paralelogramos

    Hay tres tipos de paralelogramos que debemos considerar a lo largo de este temario, a saber

    1. Rectángulo

    2. Cuadrado

    3. Rombo

    Cada uno de estos paralelogramos tiene características propias que los diferencian entre sí. Puedes encontrar una explicación más detallada de los paralelogramos aquí, Paralelogramos.

    Definición del área de un paralelogramo

    El área de un paral elogramo se define como la región encerrada por un paralelogramo en un espacio bidimensional.

    En el diagrama anterior, el área total encerrada por ABCD es el área del paralelogramo ABCD.

    Fórmula del área del paralelogramo

    Refiriéndonos a nuestro paralelogramo inicial ABCD, añadiremos a esta figura dos nuevos componentes llamados b y h. Esto se muestra en el diagrama siguiente.

    Un paralelogramo con base b y altura h, Estudia Smarter Originals Un paralelogramo con base b y altura h, Estudiar Smarter Originals

    La variable b se llama base del paralelogramo. Cualquiera de los lados largos de ABCD puede utilizarse como base. En el diagrama anterior, b puede ser AB o CD. Aquí hemos tomado b = AB.

    Ten en cuenta que esta noción es una convención y no una regla rígida.

    La variable h se denomina altura del paralelogramo. También puede denominarse altitud. La altitud es el segmento de recta perpendicular a un par de lados adyacentes del paralelogramo con un extremo en un lado y el otro extremo en el otro lado.

    Ahora que hemos definido nuestras variables b y h, podemos presentar el área de un paralelogramo de la siguiente manera.

    El área de cualquier paralelogramo viene dada por la fórmula

    A=b×h

    donde b = base y h = altura.

    Ejemplos de área de paralelogramo

    Teniendo esto en cuenta, observemos ahora los siguientes ejemplos trabajados que hacen uso de esta fórmula.

    Halla el área del siguiente paralelogramo,

    Ejemplo 1, Originales de StudySmarterEjemplo 1, StudySmarter Originals

    Solución

    Aquí, la base es b = 24 unidades y la altura es h = 10 unidades. Utilizando la fórmula del área de un paralelogramo, obtenemos,

    A= b × h =24 × 10 =240 units2

    Por tanto, el área de este paralelogramo es 240 unidades2.

    Un paralelogramo con una altura de 5 unidades de longitud tiene un área de 20 unidades2. ¿Cuál es la longitud de la base?

    Solución

    Aquí nos dan el área del paralelogramo y la altitud (o altura), es decir

    A = 20 y h = 5.

    Para hallar la base, sólo tenemos que sustituir estos valores en nuestra fórmula del área de un paralelogramo y reordenar la ecuación como se indica a continuación.

    A=b×h 20=b×5 5b=20

    Haciendo que b sea el sujeto, obtenemos

    b =205 =4 units

    Por tanto, la base de este paralelogramo es 4 unidades.

    Hallar el área de un paralelogramo a partir de un rectángulo

    Supongamos que queremos hallar el área de un paralelogramo cuya altura (o altitud) se desconoce. En cambio, se nos dan las longitudes de dos lados del paralelogramo, a saber, las longitudes de AB y AC.

    Intentemos ver este escenario gráficamente. Volviendo a nuestro paralelogramo inicial ABCD, dibujemos dos altitudes para cada par de lados adyacentes, AC y AB, así como CD y BD.

    Área de un paralelogramo a partir de un rectángulo, StudySmarter Originals Área de un paralelogramo a partir de un rectángulo, StudySmarter Originals

    Obtenemos así dos nuevos puntos en este paralelogramo, a saber, S y T. Observa ahora la forma formada por BTCS. ¿Te resulta familiar? Pues sí. Es un rectángulo, que también es un tipo de paralelogramo. Ahora tenemos que encontrar la forma de obtener las longitudes de CS o BT para poder deducir la altura de este paralelogramo.

    Observa que a partir de la construcción de estos dos segmentos de recta, hemos obtenido un par de triángulos rectángulos, CAS y BDT. Como CS = BT, nos basta con calcular sólo uno de ellos. Echemos un vistazo al triángulo CAS.

    Triangle CAS, Originales de StudySmarter Triángulo CAS, Originales de StudySmarter

    Para simplificar, denotaremos los siguientes lados: x = AS, y = CS y z = AC. Como se trata de un triángulo rectángulo, podemos utilizar el teorema de Pitágoras para obtener la longitud de CS, que es la altura del paralelogramo ABCD. Dadas las longitudes de AS y AC, tenemos

    x2 + y2 = z2

    Reordenando esto y aplicando la raíz cuadrada, obtenemos

    y=z2-x2

    Como ya hemos hallado la longitud de CS, podemos seguir hallando el área del paralelogramo ABCD mediante la fórmula dada. Tomaremos como base la longitud de AB. Por tanto, el área de ABCD es

    AreaABCD=AB×CS

    Vamos a demostrarlo con un ejemplo.

    Dado el paralelogramo PQRS que aparece a continuación, halla su área.

    Ejemplo 2, Originales de StudySmarter Ejemplo 2, StudySmarter Originals

    La recta OQ es la altitud de los lados adyacentes PQ y PS. Las longitudes de QR, PQ y PO vienen dadas por 12 unidades, 13 unidades y 5 unidades, respectivamente.

    Solución

    Como QR = PS, podemos tomar como base QR = 12 unidades. Ahora tenemos que hallar la altura de este paralelogramo para hallar su área. Ésta viene dada por el segmento de recta OQ.

    El diagrama muestra que el triángulo QPO es un triángulo rectángulo. Como tenemos la longitud de PO = 5 unidades, podemos utilizar el teorema de Pitágoras para hallar OQ.

    PO2+OQ2 = PQ2 52+OQ2 =132

    Reordenando esto y aplicando la raíz cuadrada, obtenemos el siguiente valor para OQ,

    OQ2 =132-52OQ =132-52=169-25 =144 =12 units

    Por tanto, la altura de este paralelogramo es de 12 unidades. Ahora podemos hallar el área de PQRS como se muestra a continuación,

    AreaPQRS=QR×OQ=12×12=144 units2

    Por tanto, el área de este paralelogramo es de 144 unidades2.

    Ejemplo de paralelogramo inscrito en un rectángulo

    En este ejemplo, veremos un caso en el que un paralelogramo está inscrito dentro de un rectángulo. Queremos identificar el área dentro del rectángulo que no está ocupada por el paralelogramo.

    La siguiente figura muestra un paralelogramo, PXRY dentro de un rectángulo PQRS. Halla el área de la región sombreada en azul.

    Ejemplo 3, Estudia mejor los originales Ejemplo 3, Study Smarter Originals

    El segmento de recta XZ es la altitud de los lados adyacentes XP y PY. Aquí, QP = RS = XZ, PX = RY y QR = PS. Las longitudes de QP, PY y SY vienen dadas por 19 unidades, 21 unidades y 7 unidades, respectivamente.

    Solución

    Aquí, la altura del rectángulo PQRS es h = QP = 19 unidades. La base es PS, que es la suma de las longitudes PY y SY. Por tanto, la base es igual a

    PS=PY+YS=21+7=28 units

    Por tanto, b = 28 unidades. La fórmula del área de un rectángulo es el producto de su base por su altura. Por tanto, el área del rectángulo PQRS es

    APQRS=b×h=PS×QP=28×19=532 units2

    Hallemos ahora el área del paralelogramo PXRY. La altura del paralelogramo viene dada por XZ. Como XZ = QP, entonces h = XZ = 19 unidades . La base viene dada por la longitud de PY. Por tanto, b = PY = 21 unidades. Utilizando la fórmula del área de un paralelogramo, obtenemos

    APXRY=b×h=PY×XZ=21×19=399 units2

    Así pues, las áreas del rectángulo PQRS y del paralelogramo PXRY son 532 unidades2 y 399 unidades2, respectivamente.

    Ahora tenemos que hallar el área sombreada en azul que no ocupa el paralelogramo dentro del rectángulo. Se puede hallar calculando la diferencia entre el área del rectángulo PQRS y la del paralelogramo PXRY. Al hacerlo, obtenemos

    Ablue region=APQRS-APXRY=532-399 =133 units2

    Por tanto, el área de la región restante sombreada en azul es de 133 unidades2.

    Un caso especial: Área del rombo

    El rombo es un tipo especial de cuadrilátero que, de hecho, tiene su propia fórmula para calcular su área. A veces se denomina cuadrilátero equilátero. Recordemos la definición de rombo.

    Un rombo es un paralelogramo cuyos cuatro lados tienen la misma longitud.

    Consideremos ahora el rombo siguiente. Sobre este paralelogramo se construyen dos diagonales, AD (línea azul claro) y BC (línea azul oscuro). Las diagonales tienen longitudes d1 y d2, respectivamente.

    Área de un rombo, StudySmarter Originals

    Área de un rombo, StudySmarterOriginals

    Área de un rombo

    El área del rombo viene dada por la fórmula,

    A= 12d1d2

    donde A = área, d1 = longitud de la diagonal AD y d2 = longitud de la diagonal BC.

    Ejemplo del área de un rombo

    He aquí un ejemplo con la fórmula del área de un rombo.

    Un rombo tiene diagonales de longitudes 10 unidades y 15 unidades. ¿Cuál es el área del rombo?

    Solución

    Denotemos d1 = 10 unidades y d2 = 15 unidades. Aplicando la fórmula anterior, obtenemos

    A= 12d1d2=12×10×15=75 units2

    Por tanto, el área de este rombo es 75 unidades2.

    • Lafórmula del área de un rombo también se puede utilizar para hallar el área de una cometa de forma similar.

    Terminaremos este artículo con un último ejemplo sobre el área de un paralelogramo, o más concretamente de una cometa.

    Ejemplo real del área de un paralelogramo

    Volvamos al ejemplo del principio de este artículo. Como ya tenemos una fórmula básica para calcular el área de un paralelogramo, podemos utilizarla para hallar el área de nuestra cometa.

    Decides medir las dos longitudes diagonales de tu cometa con una cinta métrica. Encuentras que la diagonal horizontal y la diagonal vertical son iguales a 18 pulgadas y 31 pulgadas, respectivamente. Utilizando la fórmula del área de un rombo, halla el área de esta cometa.

    Ejemplo 4, Estudia mejor los originales Ejemplo 4, Study Smarter Originals

    Solución

    Sea

    d1 = diagonal horizontal = 18 pulgadas

    d2 = diagonal vertical = 31 pulgadas

    Aplicando la fórmula del área de un rombo, obtenemos

    A= 12d1d2=12×18×31=558 inches2

    Por tanto, el área de esta cometa es de 558 pulgadas2.

    Área de los paralelogramos - Aspectos clave

    • Un cuadrilátero con dos pares de lados opuestos paralelos se llama paralelogramo.
    • Hay tres tipos de paralelogramos: un rectángulo, un cuadrado y un rombo.
    • Propiedades notables de un paralelogramo:
      • Los lados opuestos son paralelos

      • Los ángulos opuestos son iguales

      • Las diagonales se bisecan en un punto

      • Cada diagonal divide el paralelogramo en dos triángulos congruentes

    • El área de un paralelogramo viene dada por la fórmula A = b × h, donde b = base, h = altura.
    • El área del rombo viene dada por la fórmulaA=12d1d2, donde d1 y d2son las longitudes de las diagonales del rombo.

    Área de paralelogramos Área de paralelogramos
    Aprende con 0 tarjetas de Área de paralelogramos en la aplicación StudySmarter gratis
    Regístrate con email

    ¿Ya tienes una cuenta? Iniciar sesión

    Preguntas frecuentes sobre Área de paralelogramos
    ¿Cuál es la diferencia entre base y altura en un paralelogramo?
    La base es el lado sobre el que se apoya el paralelogramo y la altura es la distancia perpendicular entre las bases.
    ¿Cómo se calcula el área de un paralelogramo?
    Para calcular el área de un paralelogramo, se multiplica la base por la altura (A = base * altura).
    ¿Qué unidades se usan para medir el área de un paralelogramo?
    El área de un paralelogramo se mide en unidades cuadradas, como metros cuadrados (m²) o centímetros cuadrados (cm²).
    ¿Se puede calcular el área de un paralelogramo con los lados desiguales?
    Sí, se puede. Solo necesitas la base y la altura perpendicular a esa base, independientemente de que los lados sean desiguales.
    Guardar explicación

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 12 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.