Saltar a un capítulo clave
¿Qué es la probabilidad geométrica?
La probabilidad geométrica se ocupa de hallar la probabilidad de sucesos relacionados con parámetros geométricos como la longitud y el área.
Antes de iniciar tu viaje hacia la probabilidad geométrica, hay que comprender los fundamentos de la probabilidad.
¿Qué es la probabilidad?
La probabilidad nos dice lo posible que es que ocurra un suceso o una combinación de sucesos.
Los valores de la probabilidad están comprendidos entre 0 y 1 y se expresa en términos . Esto significa que el resultado puede ser 0 cuando no hay ninguna probabilidad de que ocurra ese suceso y 1 cuando hay todas las probabilidades de que ese suceso ocurra.
La probabilidad de que ocurra un suceso Z se suele escribir como P (Z). Para determinar la probabilidad de un resultado, hay que conocer el número total de resultados. El número total de resultados se conoce como espacio muestral. Una vez obtenido el espacio muestral, se halla una proporción del suceso fuera del espacio muestral. Se calcula dividiendo el suceso por el espacio muestral.
Se colocan 8 bolas rojas, 9 verdes y 3 amarillas dentro de una caja. Halla la probabilidad de sacar una bola verde.
Solución
Primero tienes que resolver el espacio muestral:
8 rojas + 9 verdes + 3 amarillas = 20 bolas
Así que, en realidad, la pregunta te está planteando que, de esas 20 bolas, ¿cuál es la probabilidad de que elijas una bola verde?
Recuerda que hay 9 bolas verdes; por tanto, estamos viendo 9 bolas verdes de 20 bolas.
Tipos de probabilidad geométrica
Aquí aprenderás dos tipos de probabilidad geométrica.
Probabilidad de longitud
También se conoce como probabilidad unidimensional. La probabilidad de que un suceso ocurra dentro de una distancia sobre una distancia mayor puede determinarse hallando el cociente entre la distancia posible y la distancia total.
Tomemos la línea siguiente.
Si la distancia BC está dentro de una distancia total AD, entonces, la probabilidad de que el suceso ocurra en BC pasa a ser
.
La probabilidad de longitud te ayuda a encontrar la posibilidad de que ocurra un suceso en sistemas unidimensionales, de esta forma, puedes sopesar tus opciones y hacer juicios razonables.
La probabilidad de longitud te indica las posibilidades de que ocurra un suceso en un sistema unidimensional.
Hay que hacer una selección entre los puntos G y F como se ve a continuación
Halla la probabilidad de que la selección caiga en
- GH
- HF
- FJ
- GH o HF
Solución
En primer lugar hay que calcular el espacio muestral entre G y F.
De G a F, la distancia
Por tanto, el espacio muestral es
a. Para hallar la probabilidad de que la selección caiga en GH, calculamos primero la distancia GH,
,
Por tanto
b. Para hallar la probabilidad de que la selección caiga en HF, calculamos la distancia HF
,
Por tanto,
c. Para hallar la probabilidad de que la selección caiga en FJ, y antes de calcular la distancia FJ, observemos que la región FJ no está dentro de GF, por lo que el hecho de que FJ ocurra en GF es cero, por lo tanto
.
d. Para hallar la probabilidad de que la selección caiga en GH o HF, se trata de la unión de dos sucesos. Así, tenemos
pero, calculada en la parte a, calculado en la parte b.
Tenemos , por tanto
El autobús Stagecoach pasa cada 15 minutos por Frimley. John tarda 10 minutos en llegar a la escuela desde la parada de autobús. Si John llega a la estación de autobuses a las siete y media y se espera que llegue al colegio a las ocho menos cuarto.
¿Cuál es la probabilidad de que llegue a tiempo al colegio?
Solución
Para averiguar la probabilidad de que Juan llegue al colegio a la hora adecuada, tenemos que encontrar la mejor hora a la que puede llegar el autobús para que Juan llegue al colegio a las 7:45. Para calcularlo necesitamos saber el mayor tiempo que Juan esperaría en la parada del autobús antes de empezar a llegar tarde. Tenemos
Tiempo desde la parada del autobús hasta la escuela = 10 minutos.
John llega a la parada del autobús a las 7:30 y tiene que estar en la escuela a las 7:45. Esto significa que John aún tiene 15 minutos (es decir, 7:45 - 7:30) para llegar.
Si el autobús llegara exactamente a las 7:30, que es cuando John llega a la estación de autobuses, significaría que John llegaría a la escuela a las 7:40, lo que significa que llegaría 5 minutos antes. Por tanto, Juan sólo puede esperar hasta las 7:35 (es decir, 7:30 + 5 minutos) antes de llegar tarde a la escuela.
Por tanto, el tiempo de espera favorable de Juan es de 5 minutos, y el tiempo total máximo que podría esperar al autobús es de 15 minutos.
Por tanto,
Un camino circular se ha dividido en 3 regiones, los arcos A, B y C. Halla la probabilidad de que una plántula que crece por un camino circular se encuentre en el arco B si la longitud del arco de A es de 5 cm, la longitud del arco de C es de 12 cm y el radio del camino circular es de 7 cm. Toma .
Solución
Para determinar la probabilidad de que la plántula crezca en B necesitamos nuestro espacio muestral. El espacio muestral es la distancia total alrededor de la trayectoria circular.
La distancia total alrededor de la trayectoria circular es igual a la circunferencia de la trayectoria. Pero
Circunferencia de la trayectoria circular,
por lo que la distancia total alrededor de la trayectoria circular es de 44 cm.
Ahora, necesitamos conocer la longitud de arco de B habiendo dado las longitudes de arco de A y C como 5 cm y 12 cm respectivamente.
Pero la distancia total alrededor de la trayectoria circular es de 44 cm, por tanto
Por tanto, la probabilidad de que la plántula se encuentre en B es
Probabilidad de área
La probabilidad de área (también conocida como probabilidad bidimensional) implica la posibilidad de que se produzca un resultado en un área determinada sobre un área mayor.
Imagina que el césped de un campo de voleibol está dividido en 3 partes P, Q y R.
Cuando tengas que predecir en qué zona del césped golpearía la pelota de voleibol, tendrás que considerar el área de las partes P, Q y R por separado. Así,
.
La probabilidad de área te indica las probabilidades de que un suceso ocurra dentro de un área.
La figura de abajo es un césped rectangular con una longitud de 15 cm y una anchura de 30 cm. Dentro del césped se ha creado una pista de arena en forma de triángulo equilátero. Si un golfista golpea un palo en el césped, ¿cuál es la probabilidad de que el palo golpee en la pista de arena?
Solución
Paso 1.
Hallamos el área del césped rectangular.
Paso 2.
Hallamos el área de la pista de arena triangular equilátera.
Paso 3.
Calculamos la probabilidad de que el golf golpee la pista de arena.
La figura de abajo es una diana. Si sus radios más largo y más corto son 56 cm y 7 cm respectivamente. Halla la probabilidad de que una flecha no dé en el blanco (el punto rojo). Toma
Solución
Paso 1.
Hallamos el área de toda la diana. Como es un círculo, se utiliza el radio más largo para hallar su área.
Paso 2.
Hallamos el área de la diana (región roja). Sabiendo que la diana (región roja) es el círculo más pequeño, eso significa que tiene el radio más pequeño. Por tanto;
Paso 3.
Hallamos la probabilidad de acertar en el ojo del buey. Sea B el suceso de dar en el blanco.
Paso 4.
Hallamos la probabilidad de no dar en el blanco. Entonces B' es el suceso de no dar en la diana, por tanto
por tanto
Probabilidad geométrica - Puntos clave
- La probabilidad nos dice cuán posible es que ocurra un suceso o una combinación de sucesos.
- El número total de resultados se conoce como espacio muestral.
- La probabilidad geométrica trata de hallar la probabilidad de sucesos relacionados con parámetros geométricos como la longitud y el área.
- La probabilidad de longitud compara la posibilidad de un resultado dentro de una distancia de una distancia mayor.
- La probabilidad de área implica la posibilidad de que se produzca un resultado en un área determinada sobre un área mayor.
Aprende con 5 tarjetas de Probabilidad Geométrica en la aplicación StudySmarter gratis
¿Ya tienes una cuenta? Iniciar sesión
Preguntas frecuentes sobre Probabilidad Geométrica
Acerca de StudySmarter
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.
Aprende más