Reflexión en Geometría

¿Alguna vez te has mirado al espejo a primera hora de la mañana y te has sorprendido de lo mal que te fue esa pelea con la almohada anoche, o quizá de lo especialmente bien que te ves esa mañana? La verdad es que los espejos no mienten, lo que esté delante de ellos se reflejará sin cambiar ninguna de sus características (nos guste o no).

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Reflexión en Geometría?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Reflexión en Geometría

  • Tiempo de lectura de 11 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Empecemos por definir qué es la reflexión, en el contexto de la Geometría.

    Definición de reflexión en Geometría

    En Geometría, la reflexión es una transformación en la que cada punto de una forma se desplaza una distancia igual a través de una línea determinada. La línea se llama línea de reflexión.

    Este tipo de transformación crea una imagen especular de una forma, también conocida como inversión.

    La forma original que se refleja se denomina imagen previa, mientras que la forma reflejada se conoce como imagen reflejada . La imagen reflejada tiene el mismo tamaño y forma que la preimagen, sólo que esta vez está orientada en sentido contrario.

    Ejemplo de Reflexión en Geometría

    Veamos un ejemplo para comprender mejor los distintos conceptos que intervienen en la reflexión.

    La figura 1 muestra una forma triangular a la derecha del eje y(imagenprevia), que se ha reflejado sobre el eje y(línea de reflexión), creando una imagen especular(imagen reflejada).

    Reflexión en Geometría Reflexión de una figura sobre el eje y ejemplo StudySmarterFig. 1. Ejemplo de reflexión de una forma sobre el eje y

    Los pasos que debes seguir para reflejar una forma sobre una recta se indican más adelante en este artículo. ¡Sigue leyendo si quieres saber más!

    Ejemplos reales de reflexión en geometría

    Pensemos dónde podemos encontrar reflexiones en nuestra vida cotidiana.

    a) El ejemplo más evidente será mirarte en el espejo y ver tu propia imagen reflejada en él, frente a ti. La figura 2 muestra un simpático gato reflejado en un espejo.

    Reflexión en Geometría Ejemplo real de reflexión - gato reflejado en un espejo StudySmarterFig. 2. Ejemplo real de reflejo - Un gato reflejado en un espejo

    Cualquier cosa o persona que esté delante del espejo se reflejará en él.

    b) Otro ejemplo podría ser el reflejo que ves en el agua. Sin embargo, en este caso, la imagen reflejada puede estar ligeramente distorsionada en comparación con la original. Véase la figura 3.

    Reflexión en Geometría Ejemplo real de reflexión: un árbol reflejado en el agua StudySmarterFig. 3. Ejemplo real de reflejo - Un árbol reflejado en el agua

    c) También puedes encontrar reflejos en objetos de cristal, como escaparates, mesas de cristal, etc. Véase la figura 4.

    Reflexión en Geometría Ejemplo real de reflexión: personas reflejadas en un cristal StudySmarterFig. 4. Ejemplo real de reflejo - Personas reflejadas en un cristal

    Ahora vamos a sumergirnos en las reglas que debes seguir para realizar reflexiones en Geometría.

    Reglas de reflexión en Geometría

    Las formas geométricas en el plano de coordenadas pueden reflejarse sobre el eje x, sobre el eje y o sobre una recta de la forma \(y = x\) o \(y = -x\). En los siguientes apartados describiremos las reglas que debes seguir en cada caso.

    Reflexión sobre el eje x

    La regla para reflejar sobre el eje x se muestra en la tabla siguiente.

    Tipo de reflexiónRegla de reflexiónDescripción de la regla
    Reflexión sobre el eje x\[(x, y) \rightarrow (x, -y)\}]
    • Las coordenadas x de los vértices que forman parte de la forma seguirán siendo las mismas.
    • Las coordenadas y de los vértices cambiarán de signo.

    Los pasos a seguir para realizar una reflexión sobre el eje x son:

    • Paso 1: Siguiendo la regla de reflexión para este caso, cambia el signo de las coordenadas y de cada vértice de la forma, multiplicándolas por \(-1\). El nuevo conjunto de vértices corresponderá a los vértices de la imagen reflejada.

    \[(x, y) \arrow (x, -y)\]

    • Paso 2: Traza los vértices de las imágenes original y reflejada en el plano de coordenadas.

    • Paso3: Dibuja ambas formas uniendo sus vértices correspondientes con líneas rectas.

    Veámoslo más claramente con un ejemplo.

    Un triángulo tiene los siguientes vértices \(A = (1, 3)\), \(B = (1, 1)\) y \(C = (3, 3)\). Reflejalo sobre el eje x.

    Paso 1: Cambia el signo de las coordenadas y de cada vértice del triángulo original, para obtener los vértices de la imagen reflejada.

    \[\begin{align}\textbf{Imagen previa} &\rightarrow \textbf{Imagen reflejada} |(x, y) &\rightarrow (x, -y) |A= (1, 3) &\rightarrow A' = (1, -3) \B = (1, 1) &\flecha derecha B' = (1, -1)C = (3, 3) & flecha derecha C' = (3, -3)\end{align}\]Pasos 2 y 3: Traza los vértices de las imágenes original y reflejada en el plano de coordenadas, y dibuja ambas formas.

    Reflexión en Geometría Reflexión sobre el eje x ejemplo StudySmarterFig. 5. Ejemplo de reflexión sobre el eje x

    Observa que la distancia entre cada v értice de la imagen previa y la línea de reflexión (eje x) es la misma que la distancia entre su vértice correspondiente en la imagen reflejada y la línea de reflexión. Por ejemplo, los vértices \(B = (1, 1)\) y \(B' = (1, -1)\) están ambos a 1 unidad del eje x.

    Reflexión sobre el eje y

    La regla para la reflexión sobre el eje y es la siguiente:

    Tipo de reflexiónRegla de reflexiónDescripción de la regla
    Reflexión sobre el eje y\[(x, y) \rightarrow (-x, y)\}]
    • Las coordenadas x de los vértices que forman parte de la forma cambiarán de signo.
    • Las coordenadas y de los vértices seguirán siendo las mismas.

    Los pasos a seguir para realizar una reflexión sobre el eje y son prácticamente los mismos que para la reflexión sobre el eje x, pero la diferencia se basa en el cambio de la regla de reflexión. Los pasos en este caso son los siguientes

    • Paso 1: Siguiendo la regla de reflexión para este caso, cambia el signo de las coordenadas x de cada vértice de la forma, multiplicándolas por \(-1\). El nuevo conjunto de vértices corresponderá a los vértices de la imagen reflejada.

    \[(x, y) \rightarrow (-x, y)\}]

    • Paso2: Traza los vértices de las imágenes original y reflejada en el plano de coordenadas.

    • Paso3 :Dibuja ambas formas uniendo sus vértices correspondientes con líneas rectas.

    Veamos un ejemplo.

    Un cuadrado tiene los siguientes vértices \(D = (1, 3)\), \(E = (1, 1)\), \(F = (3, 1)\) y \(G = (3, 3)\). Reflejalo sobre el eje y.

    Paso 1: Cambia el signo de las coordenadas x de cada vértice del cuadrado original, para obtener los vértices de la imagen reflejada.

    \[\begin{align}\textbf{Imagen previa} &\rightarrow \textbf{Imagen reflejada} \\(x, y) y flecha derecha (-x, y)D= (1, 3) y flecha derecha D' = (-1, 3)E = (1, 1) y\Flecha derecha E' = (-1, 1)F = (3, 1) Flecha derecha F' = (-3, 1)G = (3, 3) Flecha derecha G' = (-3, 3)\end{align}\]Pasos 2 y 3: Traza los vértices de las imágenes original y reflejada en el plano de coordenadas, y dibuja ambas formas.

    Reflexión en geometría Reflexión sobre el eje y ejemplo StudySmarterFig. 6. Ejemplo de reflexión sobre el eje y

    Reflexión sobre las rectas y = x o y = -x

    Las reglas de reflexión sobre las rectas \(y = x\) o \(y = -x\) se muestran en la tabla siguiente:

    Tipo de reflexiónRegla de reflexiónDescripción de la regla
    Reflexión sobre la recta \(y = x\)\[(x, y) flecha (y, x)\}]Las coordenadas x y las coordenadas y de los vértices que forman parte de la forma se intercambian.
    Reflexión sobre la recta \(y = -x\)\[(x, y) \arrow (-y, -x)\}]En este caso, las coordenadas x y las coordenadas y, además de intercambiarse, cambian de signo.

    Los pasos a seguir para realizar una reflexión sobre las rectas \(y = x\) y \(y = -x\) son los siguientes:

    • Paso 1: Al reflejar sobre la recta \(y = x\), intercambia los lugares de las coordenadas x y las coordenadas y de los vértices de la forma original.

    \[(x, y) \arrow (y, x)\arrow (y, x)\]

    Al reflejar sobre la recta \(y = -x\), además de intercambiar los lugares de las coordenadas x y las coordenadas y de los vértices de la forma original, también tienes que cambiar su signo, multiplicándolas por \(-1\).

    \[(x, y) \arrowright (-y, -x)\]

    El nuevo conjunto de vértices corresponderá a los vértices de la imagen reflejada.

    • Paso 2: Traza los vértices de las imágenes original y reflejada en el plano de coordenadas.

    • Paso3: Dibuja ambas formas uniendo sus vértices correspondientes con líneas rectas.

    Aquí tienes un par de ejemplos para que veas cómo funcionan estas reglas. Primero vamos a realizar una reflexión sobre la recta \(y = x\).

    Un triángulo tiene los siguientes vértices \(A = (-2, 1)\), \(B = (0, 3)\) y \(C = (-4, 4)\). Refléjala sobre la recta \(y = x\).

    Paso 1: El reflejo es sobre la recta \(y = x\), por lo tanto, tienes que intercambiar los lugares de las coordenadas x y las coordenadas y de los vértices de la forma original, para obtener los vértices de la imagen reflejada.

    \[\begin{align}\textbf{Imagen previa} &\rightarrow \textbf{Imagen reflejada} |(x, y) &\rightarrow (y, x) |A= (-2, 1) &\rightarrow A' = (1, -2) \B = (0, 3) &\C = (-4, 4) &\rightarrow C' = (4, -4)\end{align}\\]Pasos 2 y 3: Traza los vértices de las imágenes original y reflejada en el plano de coordenadas, y dibuja ambas formas.

    Reflexión en Geometría Reflexión sobre la recta y = x ejemplo StudySmarterFig. 7. Ejemplo de reflexión sobre la recta \(y = x\)

    Veamos ahora un ejemplo de reflexión sobre la recta \(y = -x\).

    Un rectángulo tiene los siguientes vértices \(A = (1, 3)\), \(B = (3, 1)\), \(C = (4, 2)\) y \(D = (2, 4)\). Refléjala sobre la recta \(y = -x\).

    Paso 1: El reflejo es sobre la recta \(y = -x\), por tanto, tienes que intercambiar los lugares de las coordenadas x y las coordenadas y de los vértices de la forma original, y cambiar su signo, para obtener los vértices de la imagen reflejada.

    \[\begin{align}\textbf{Imagen previa} &\rightarrow \textbf{Imagen reflejada} |(x, y) &\rightarrow (-y, -x) |A= (1, 3) &\rightarrow A' = (-3, -1) \B = (3, 1) &\Flecha derecha B' = (-1, -3)C = (4, 2) Flecha derecha C' = (-2, -4)D = (2, 4) Flecha derecha D' = (-4, -2)\end{align}\\}Pasos 2 y 3: Traza los vértices de las imágenes original y reflejada en el plano de coordenadas, y dibuja ambas formas.

    Reflexión en Geometría Reflexión sobre la recta y = -x ejemplo StudySmarterFig. 8. Ejemplo de reflexión sobre la recta \(y = -x\)

    Fórmulas de reflexión en geometría de coordenadas

    Ahora que hemos explorado cada caso de reflexión por separado, vamos a resumir las fórmulas de las reglas que debes tener en cuenta al reflejar formas en el plano coordenado:

    Tipo de reflexiónRegla de reflexión
    Reflexión sobre el eje x\[(x, y) \rightarrow (x, -y)\}]
    Reflexión sobre el eje y\flechaderecha (-x, y)\[(x, y) flechaderecha (-x, y)\]
    Reflexión sobre la recta \(y = x\)\Reflexión sobre la recta (x, y) flecha derecha (y, x)
    Reflexión sobre la recta \(y = -x)\flecha derecha (-y, -x)

    Reflexión en Geometría - Puntos clave

    • En Geometría, la reflexión es una transformación en la que cada punto de una figura se desplaza una distancia igual a través de una recta dada. La línea se llama línea de reflexión.
    • La forma original que se refleja se denomina imagen previa, mientras que la forma reflejada se conoce como imagen reflejada.
    • Al reflejar una forma sobre el eje x, cambia el signo de las coordenadas y de cada vértice de la forma original, para obtener los vértices de la imagen reflejada.
    • Al reflejar una forma sobre el eje y, cambia el signo de las coordenadas x de cada vértice de la forma original, para obtener los vértices de la imagen reflejada.
    • Al reflejar una forma sobre la recta \(y = x\), intercambia los lugares de las coordenadas x y las coordenadas y de los vértices de la forma original, para obtener los vértices de la imagen reflejada.
    • Al reflejar una forma sobre la recta \ (y = -x\), intercambia los lugares de las coordenadas x y las coordenadas y de los vértices de la forma original, y cambia su signo, para obtener los vértices de la imagen reflejada.
    Preguntas frecuentes sobre Reflexión en Geometría
    ¿Qué es la reflexión en geometría?
    La reflexión en geometría es una transformación que invierte una figura sobre una línea o eje de reflexión, creando una imagen especular.
    ¿Cómo se realiza una reflexión sobre el eje x?
    Para reflejar sobre el eje x, se invierten las coordenadas y de todos los puntos de la figura. Si un punto es (x, y), su reflejo es (x, -y).
    ¿Cuál es la importancia de la reflexión en geometría?
    La reflexión es importante porque ayuda a entender la simetría y las propiedades de las figuras en el plano cartesiano.
    ¿Cuál es la diferencia entre reflexión y rotación?
    La reflexión invierte una figura alrededor de un eje, mientras que la rotación gira la figura alrededor de un punto.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    ¿Cómo se llama la forma original que se refleja?

    ¿Cómo se denomina la forma reflejada?

    La imagen reflejada tiene el mismo tamaño y forma que la imagen previa.

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 11 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.