Fracciones en Expresiones y Ecuaciones

Las expresiones algebraicas en matemáticas consisten en constantes y variables relacionadas mediante operaciones algebraicas (sumas, restas, multiplicaciones y divisiones). Una fracción es la división de dos expresiones: por ejemplo 12, x+13, xyx+y son fracciones de expresiones que contienen constantes y/o variables.

Pruéablo tú mismo

Scan and solve every subject with AI

Try our homework helper for free Homework Helper
Avatar

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Fracciones en Expresiones y Ecuaciones

  • Tiempo de lectura de 7 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Sign up for free to save, edit & create flashcards.
Guardar explicación Guardar explicación
  • Fact Checked Content
  • reading time7 min
Tarjetas de estudio
Tarjetas de estudio
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time7 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Guardar explicación Guardar explicación

Saltar a un capítulo clave

    Reproducir como pódcast 12 minutos

    ¡Gracias por tu interés en el aprendizaje por audio!

    Esta función aún no está lista, pero nos encantaría saber por qué prefieres el aprendizaje por audio.

    ¿Por qué prefieres el aprendizaje por audio? (opcional)

    Enviar comentarios
    Reproducir como pódcast 12 minutos

    Una ecuación es un enunciado matemático que consiste en un símbolo igual entre dos expresiones algebraicas. Por ejemplo 12+x=2x+1 es una ecuación.

    Resolver una ecuación significa encontrar el valor de la variable que hace que las expresiones del lado izquierdo y del lado derecho sean iguales; este valor se llama solución de la ecuación. Por ejemplo, la solución de la ecuación 12+x=2x+1 es x = -12si introduces este valor en ambos lados de la ecuación, obtienes 0 = 0.

    Este artículo trata de la presencia de fracciones en expresiones y ecuaciones; dichas ecuaciones se denominan (como era de esperar) ecuaciones fraccionarias.

    El primer paso para tratar las ecuaciones fraccionarias es eliminar las fracciones de ellas. Vamos a ver cómo hacerlo.

    ¿Qué son términos, coeficientes, variables y constantes?

    • Los términos son los elementos constitutivos de las expresiones algebraicas: en una expresión, cada término está separado por un signo más (+) o un signo menos (-). En la ecuación 3x+4=103x y 4 son los términos de la expresión de la izquierda, y 10 es el término de la expresión de la derecha.
    • Los coeficientes son los valores que multiplican las variables en una expresión o en una ecuación. Dada la expresión 34x+4el coeficiente es el número que multiplica a la x, que es34.
    • Las variables son las letras de las expresiones y ecuaciones que se utilizan para representar cantidades desconocidas. Cuando tienes una expresión dada como 32x+12y, x e y se identifican como variables.
    • Las constantes son los números de las expresiones y ecuaciones que no cambian. En la ecuación 2x - 4y + 4 = 0 por ejemplo, 4 es la constante.

    Fracciones en Expresiones y Ecuaciones, Términos, StudySmarterFigura 1. Términos del álgebra, siyavula.com

    Cómo resolver expresiones con fracciones: Ejemplos paso a paso

    Si tratas con fracciones en expresiones, lo más fácil es sumarlas y restarlas cuando hay denominadores comunes. Esto significa que encontraremos la fracción equivalente de las fracciones implicadas hallando el mínimo común divisor (MCD ) para los denominadores de los términos.

    Simplifica 3x5+x4

    Solución:

    Lo que haremos aquí es encontrar un denominador común para los dos términos, de modo que puedan sumarse. En primer lugar, tendremos que hallar el LCD de los denominadores de las dos fracciones, 5 y 4. El mínimo común divisor de ambos números será 20. Ahora hallaremos la fracción equivalente para ambas.

    Si el denominador de la primera fracción es ahora 20, significa que probablemente hemos multiplicado el denominador inicial, 5, por 4. Esto significaría que tendremos que multiplicar también el numerador por 4 para tener una fracción equivalente.

    443x5 = 12x20

    Haremos lo mismo con la segunda fracción. 20 como denominador también significa que tendremos que haber multiplicado 4 (como denominador) por 5 para tener 20 como nuevo denominador de la fracción equivalente. Esto significa que tendremos que multiplicar también el numerador por 5.

    55x4 = 5x20

    Ya tenemos nuestra nueva expresión:

    12x20+5x20

    Esto resulta mucho más fácil de resolver, ya que todo lo que tenemos que hacer es sumar los numeradores y mantener los denominadores.

    12x20+5x20=17x20

    Como no se puede simplificar más, lo dejaremos así.

    Resolver expresiones con fraccionesfactorizando yagrupando

    Puede haber problemas más complicados en los que tengamos que utilizar un par de técnicas como la factorización y la agrupación. En estas situaciones, hay que tener mucho cuidado con lo que es particularmente un término y cuándo se dividen sus componentes. Veamos el ejemplo siguiente:

    Simplifica ax - b + x -abax2 - abx

    Solución:

    Como no podemos cancelar nada en esta expresión actual, podemos factorizar para ver qué podemos hacer con la situación. Primero agruparemos los términos semejantes en el numerador reordenándolos de modo que los términos que contengan x estén próximos y los términos que contengan b también estén próximos.

    ax - b +x - abax2 - abx

    ax + x - b - abax2 - abx

    Ahora factorizaremos. El factor común de los dos primeros términos del numerador es x. Eso se puede factorizar. El factor común de los dos últimos términos del numerador es -b, y también se puede factorizar.

    x(a+1) -b(1+a)ax2-abx

    La idea de factorizar aquí es construir un paréntesis común para poder eliminar uno. Aquí tenemos (a+1) y (1+a). Teniendo en cuenta la propiedad conmutativa de la suma, ambos paréntesis son iguales.

    Esto nos dejará con :

    (x-b) (a+1)ax2-abx

    Ahora factorizaremos inmediatamente el denominador. Como ax aparece común en ambos términos, eso es lo que se factorizará.

    (x-b) (a+1) ax(x-b)

    Ahora nos encontramos en una situación en la que podemos anular libremente. (x-b) en el denominador anulará (x-b) en el numerador. Esto es cierto si x es diferente de b.

    (a+1)ax

    Esta es la forma más sencilla que podemos obtener de esta expresión.

    Cómo resolver ecuaciones con fracciones: Ejemplos paso a paso

    Como ya se ha dicho, lo que hay que tener en cuenta cuando se trata de ecuaciones en las que intervienen fracciones es intentar eliminar primero la fracción. Debes multiplicar todos los términos de ambos lados de la ecuación por el denominador de la fracción.

    Si nos dieran la ecuación 5x + 12 = 12multiplicaríamos primero la ecuación (que técnicamente es también cada término de la ecuación) por 2.

    Solución:

    2 (5x +12 = 12)

    2(5x) + 2(12) = 2(12)

    Tras multiplicar por 2, la fracción se anulará.

    10x + 1 = 24

    Ahora reordenaremos la ecuación para poner los términos semejantes en lados distintos de la ecuación.

    10x = 24-1

    10x = 23

    Divide ambos lados por 10

    10x10 = 2310

    x =2.3

    Para comprobar que ésta es realmente la solución de la ecuación, tienes que volver a sustituir el valor de x en la ecuación original:

    5(2.3) + 12 = 12

    11.5 + 12 = 12

    12 = 12

    Resuelve32x +12(x-4) = 6

    Solución:

    Una ecuación con dos fracciones con el mismo denominador tendrá sus términos multiplicados por el denominador, como se ha dicho antes.

    2(32x) + 2(12(x-4)) = 2(6)

    3x + x-4 = 12

    4x - 4 = 12

    Los términos iguales se agruparán a partir de este punto.

    4x = 12 + 4

    4x = 16

    Divide ambos lados por 4

    4x4 = 164

    x = 4

    Para evaluar esto, tendrías que volver a sustituir el valor de x en la ecuación original.

    32(4) +12(4-4) = 6

    (3×2) + 12(0) = 6

    6 + 0 = 6

    6 =6

    Resuelve14x + 32(2x-1) = 2

    Solución:

    Nuestro ejemplo es bastante diferente de lo habitual aquí. Como tenemos dos fracciones con denominadores distintos, hallaremos el MCL de ambas y lo multiplicaremos por la ecuación. El MCL es 4, así que

    4(14x) + 4(32(2x-1)) = 4(2)

    1x + 2(3(2x-1)) = 4(2)

    Ahora expandiremos lo que hay entre paréntesis:

    1x + 2(6x-3) = 8

    1x + 12x - 6 = 8

    Agrupa los términos semejantes:

    12x + 1x = 8 + 6

    13x = 14

    Divide ambos lados por 13:

    13x13 = 1413

    x = 1413

    Para evaluar esto, tendrías que volver a sustituir el valor de x en la ecuación original.

    14(1413) + 32(2(1413)-1) = 2

    2 =2

    Fracciones en expresiones y ecuaciones - Puntos clave

    • El lado izquierdo y el lado derecho de una ecuación deben permanecer iguales al operar con ellos.
    • El primer paso para tratar ecuaciones fraccionarias es eliminar las fracciones de ellas.
    • Cuando tengas una ecuación con dos fracciones y denominadores distintos, halla el MCL de ambos números.
    Preguntas frecuentes sobre Fracciones en Expresiones y Ecuaciones
    ¿Qué es una fracción en matemáticas?
    Una fracción representa una parte de un entero y se expresa como a/b, donde 'a' es el numerador y 'b' el denominador.
    ¿Cómo se simplifica una fracción?
    Para simplificar una fracción, divide el numerador y el denominador por su máximo común divisor.
    ¿Cómo se suman fracciones?
    Para sumar fracciones, encuentra un denominador común y luego suma los numeradores.
    ¿Cómo se resuelven ecuaciones con fracciones?
    Para resolver ecuaciones con fracciones, elimina las fracciones multiplicando todos los términos por el mínimo común múltiplo de los denominadores.
    Guardar explicación
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 7 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    Únete a más de 30 millones de estudiantes que aprenden con nuestra aplicación gratuita Vaia.

    La primera plataforma de aprendizaje con todas las herramientas y materiales de estudio que necesitas.

    Intent Image
    • Edición de notas
    • Tarjetas de memoria
    • Asistente de IA
    • Explicaciones
    • Exámenes simulados