¿Cómo se integran las funciones trigonométricas al cuadrado?
Para integrar funciones trigonométricas al cuadrado, como \(\sin^2{x}\), puedes utilizar las integrales de las funciones trigonométricas que acabas de determinar, y las identidades angulares dobles.
Por ejemplo, para hallar \(\int{{sin^2{x} \space dx}\), puedes utilizar la identidad \(\cos{2x} = 1 - 2\sin^2{x}\).
Si reordenamos esta expresión para hallar \(\sin^2{x}\), se obtiene \(\sin^2{x} = \frac{1}{2} - \frac {\cos{2x}}{2}\).
\(Comienzo) \int{{cos^2{x}} \dx} &= \frac {1}{2} \int {\cos{2x} + 1} \frac {1}{2}(\frac {\sin{2x}}{2} + x) + c, \text {utilizando la Regla de la Cadena inversa para} \seno {2x} \\ &= \frac {\sin{2x}}{4} + \frac {x}{2} + c fin).
Integrar funciones trigonométricas inversas
Las funciones trigonométricas inversas, como arcsin, arccos y arctan, no pueden integrarse directamente. Por tanto, utilizamos la integración por partes. Sabemos que \(\int{u \space dv} = uv - \int {v \space du}\), y como no podemos integrar la función trigonométrica inversa pero sí derivarla, dejamos que u = función trigonométrica inversa y v = 1. A continuación, se utiliza la fórmula de integración por partes para resolver la integral.
Integral de arcsin(x)
La integral de \(\arcsin{x}\) puede escribirse como \(\int{\arcsin{x}\cdot 1 \space dx}\).
Por tanto, deja que \(u = \arcsin {x}, du = \frac {1}{sqrt{1-x^2}}, dv = 1, v =x\). .
Usamos la fórmula de integración por partes y hallamos el \int {\arcsin{x} \space dx} = x \cdot \arcsin {x} - \int {\frac {x}{\sqrt{1-x^2}}. \space dx}).
Por tanto, \(\int {\arcsin{x} \space dx} = x \cdot \arcsin{x} + \sqrt {1 - x^2} + c\).
Integral de arccos(x)
La integral de \(\arccos{x}\) puede escribirse como \(\int{\arccos{x}\cdot 1 \cdot dx}\). Utilizando la integración por partes, sea \(u = \arccos{x}, du = \frac {-1}{sqrt{1-x^2}}, dv = 1, v = x\) . Utilizando la fórmula de integración por partes, al encontrar que \(\int{\arccos{x} \space dx} = x \cdot \arccos {x} - \int{\frac{-x}{\sqrt{1}-x^2} \dx), o \(x \cdot \arccos{x} + \int{\frac{x}{cuadrado1-x^2} dx). A continuación, utilizamos la integración por sustitución, dejando que \(w = 1 - x^2\).
Siguiendo el mismo método que para la integral de \(\arccosin{x}), encontramos que \(\int{arccos{x} \cdot dx} = x \cdot \arccos{x} - \sqrt{1-x^2} + c\).
Integral de arctan(x)
La integral de arctan(x) puede escribirse como \int {\arctan{x} \cdot 1 \space dx}\). Utilizando la integración por partes, que \(u = \arctan{x}, \space du = \frac{1}{1 + x^2}, \space dv = 1, \space v = x\). Utilizando la fórmula de integración por partes, hallamos que \(\int\arctan{x} \space dx = x \cdot \arctan{x} - \int {\frac{x}{1 + x^2} dx}\). Reconocemos esta integral como un logaritmo natural de \((1 + x^2)\), ya que, dejando que \(w = 1 + x^2\), \(dw = 2x\). Esto significa que el numerador \(x = \frac{1}{2} dw\).
Por tanto, encontramos que \(\int{\arctan{x} \space dx} = x \space \arctan{x} - \frac{1}{2} ln|1 + x^2| + c\).
Dejando que \(u = \cos{x}, \espacio \frac{du}{dx} = -\sin{x}\) . Por tanto, sustituyendo los valores de u por los de x, obtenemos \(\begin{align} \int{u^3(\frac{-du}{dx})dx} &= - \int{u^3du} \ &= - \frac {u^4}{4} +c \end{align}\)
A continuación, sustituimos los valores de u por los de x.
Tabla 1. Integración de funciones trigonométricas.
Integración de funciones trigonométricas - Puntos clave
\(\int{sin{x} \espacio dx} = - \cos{x} + c\)
\(INTENCIÓN DE LOS COSTOS DE LA X EN EL ESPACIO DX = SIN EX + C)
\(Intintestán{x} espacio dx} = n|sec{x}| + c)
Podemos utilizar la regla de la cadena cuando la variable entre paréntesis es más compleja que x, por ejemplo, \(\int{\sin{2x} \space dx = \frac {-1}{2} \cos{2x} + c\), ya que hemos dividido por la derivada de los paréntesis.
Podemos utilizar y reordenar identidades angulares dobles, como \(\cos{2x} = 2 \cos^2{x} - 1\) cuando nos dan una función trigonométrica al cuadrado.
Al calcular integrales de funciones trigonométricas inversas, utilizamos la integración por partes, mediante la fórmula \(int{u \space dv} = uv - \int{v \space du}\), y dejando que u = función trigonométrica inversa, y dv = 1.
Aprende más rápido con las 0 tarjetas sobre Integración de Funciones Trigonométricas
Regístrate gratis para acceder a todas nuestras tarjetas.
Preguntas frecuentes sobre Integración de Funciones Trigonométricas
¿Qué es la integración de funciones trigonométricas?
La integración de funciones trigonométricas es el proceso de hallar la integral de expresiones que contienen funciones como seno, coseno y tangente.
¿Cómo se integra el seno?
Para integrar el seno, ∫sin(x)dx, se obtiene -cos(x) + C.
¿Cuál es la integral de coseno?
La integral de coseno, ∫cos(x)dx, es sin(x) + C.
¿Qué técnicas se utilizan para integrar funciones trigonométricas?
Para integrar funciones trigonométricas, se usan técnicas como sustitución trigonométrica y fracciones parciales.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt
Digital Content Specialist
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.