mínimo común denominador

Imagina que celebras una cena de Acción de Gracias y todo el mundo decide contribuir contigo con una fracción de su pizza. ¿Puedes determinar cuánta pizza tienes en tu poder? Para ello, hay que comprender el concepto del mínimo común denominador. A continuación lo aprenderás.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
mínimo común denominador?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de mínimo común denominador

  • Tiempo de lectura de 13 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Este artículo explorará la definición del mínimo común denominador, y ejemplos de la aplicación de este concepto.

    ¿Qué es el mínimo común denominador?

    Dada una lista de fracciones, el mínimo común denominador (MCD) es el múltiplo más pequeño que es común a los denominadores de las fracciones. A menudo se denomina Mínimo Común Múltiplo (MCD) de los denominadores.

    Esto parece complicado, pero en realidad no lo es. Veamos un ejemplo:

    El mínimo común denominador de \( \frac{2}{3}\) y \( \frac{3}{4}\) es \(12\), ya que \(12\) es múltiplo de ambos denominadores \((3\) y \(4),\) y es el múltiplo más pequeño de estos números que puedes encontrar.

    Cuando se da una lista de fracciones y se quiere determinar el LCD, buscamos el menor número lo suficientemente grande como para dividirlo por cada denominador de la lista sin que quede resto.

    ¿Qué es un denominador común?

    Un denominador común es un número que puede dividirse por otros denominadores sin que quede resto. Este número es múltiplo de otros denominadores.

    Considera las fracciones34 y 56: su denominador común debe ser divisible por ambos denominadores (4 y 6) sin resto. Por tanto, para hallar su denominador común, tienes que considerar los múltiplos de cada denominador.

    Los múltiplos de 4 son: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...

    Los múltiplos de 6 son: 6, 12, 18, 24, 30, 36, 42, ...

    Entre los múltiplos de ambos denominadores enumerados anteriormente, los múltiplos comunes son 12, 24, 36... Esto es cierto porque cuando estos números se dividen por los denominadores 4 y 6, no tienen resto.

    Sin embargo, los múltiplos de un número son infinitos. Imagina cuántos números se escribirían como múltiplos de 4 y 6, probablemente nos quedaríamos sin papel. Por eso, los matemáticos idearon el mínimo común denominador o mínimo común múltiplo, que utiliza sólo el número más pequeño que es múltiplo entre un conjunto de números.

    Por tanto, el MCD entre 4 y 6 es 12.

    ¿Cómo hallar el mínimo común denominador?

    Hay cuatro métodos que se pueden utilizar para hallar el LCD:

    1. Reglas LCD

    2. Listado de múltiplos

    3. Producto de factores primos

    4. Producto combinado de factores primos.

    Reglas sencillas para hallar el LCD

    Una forma de resolver LCM o LCD es aplicando las reglas de LCD. Ten en cuenta que estas reglas se aplican mejor sólo entre un conjunto de dos números. También se pueden utilizar en una lista de números superior a dos, pero pueden resultar más complejas si no se aplican bien.

    Las siguientes son las reglas LCD:

    Denominadores iguales

    Cuando dos fracciones tienen el mismo denominador, el LCD es ese denominador.

    Un denominador los domina a todos

    Si un número de un conjunto de denominadores es múltiplo de todos los demás números de ese conjunto, el MCL es ese múltiplo.

    Denominadores primos

    El LCM de un conjunto de denominadores que son números primos es el producto de esos números primos. Debes asegurarte de que esos denominadores son números primos.

    Sin factores comunes

    La CDL de una lista de denominadores que no tienen ningún factor común es el producto de esos denominadores. Debes asegurarte de que ningún número puede dividir ningún par sin que quede un resto.

    El truco del factor común

    Si existe un factor común entre un conjunto de dos números, el LCD se obtiene mediante los dos pasos siguientes:

    1. Divide uno de los dos números por su mayor factor común para obtener el primer resultado.
    2. Multiplica el primer resultado por el otro número. Esta respuesta se convierte en el LCD.

    Ejemplos de reglas del mínimo común denominador

    Denominadores iguales - ejemplo

    Por ejemplo, el LCD entre fracciones 32 y 12 es 2 porque el denominador de las fracciones es el mismo.

    Un denominador los rige a todos - ejemplo

    El LCD entre 34, 12y 320 es 20. Esto se debe a que, en la lista de denominadores de 2, 4 y 20, tenemos que 2 y 4 son factores de 20. Así pues, 20 es múltiplo de 2 y 4, por lo que 20 es el LCD.

    Ejemplo de denominadores primos

    El LCD entre 23 y 15 es 15. Los denominadores 3 y 5 son números primos. Por tanto

    3×5=15

    15 es aquí el LCD.

    Sin factores comunes - ejemplo

    La pantalla LCD entre 79 y 310 es 90. Los denominadores 9 y 10 no son números primos. Y lo que es más importante, no hay factor común entre estos dos números. Así que el LCD es

    9×10=90

    El complicado con un factor común - ejemplo

    El LCD entre 38 y 720 es 40. El mayor factor común entre 8 y 20 es 4. Divide 8 por 4 y tu primera respuesta es 2. Luego multiplica tu primer resultado, que es dos, por el otro número 20,

    2×20=40

    Así que el LCD, en este caso, es 40.

    En algunos casos, es posible que no sepas qué regla LCD debes aplicar. En estos casos, resultan útiles los siguientes métodos para hallar el mínimo común denominador de una lista de fracciones.

    Método de la lista de múltiplos

    En este método, debes enumerar algunos múltiplos de cada denominador. Después, eliges el mínimo común múltiplo entre todos los múltiplos enumerados, es decir, el número situado más a la izquierda que aparece en ambas listas. Para aplicar este método, debes estar familiarizado con la tabla de multiplicar

    Encuentra la LCD de 12, 34 y 56.

    Solución:

    Paso 1. ¿Cuáles son los denominadores?

    Los denominadores son 2, 4 y 6

    Paso 2. Escribe el múltiplo de estos números.

    Los múltiplos de 2 son 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, ...

    Los múltiplos de 4 son 0, 4, 8, 12, 16, 20, 24 , 28, 32, 36, 40, 44, 48, ...

    Los múltiplos de 6 son 0, 6 12, 18, 24 , 30, 36, 42, 48, 54, 60, 66, 72, ...

    Observarás que 12 y 24 son múltiplos comunes de 2, 4 y 6. Pero queremos el mínimo común múltiplo. Por tanto, nuestro mínimo común múltiplo es 12. Esto significa que nuestro LCD es 12 .

    Cuándo debes utilizar el método de listado de múltiplos

    Ten en cuenta que el método de listado de Múltiplos se utiliza mejor cuando

    1. Los números implicados son pequeños, algo entre 2 y 12, por ejemplo, 2, 3, 4, 5, 6, 7... 12. Por encima de 12 es difícil escribir los múltiplos.

    2. No hay más de 3 fracciones.

    Más técnicamente, el número de elementos de un conjunto se denomina cardinalidad del conjunto. Así que el método de enumeración se aplica mejor en conjuntos de fracciones con cardinalidad 3 o inferior.

    Por ejemplo, encontrar la LCD entre 25 y 27 o entre 12, 13 y 34. Esto reduciría los errores y el tiempo empleado en encontrar la LCD.

    Encuentra el LCD entre 25 y 27

    Solución:

    Paso 1. ¿Cuáles son los denominadores?

    Los denominadores son 5 y 7

    Paso 2. Escribe el múltiplo de estos números.

    Los múltiplos de 5 son 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, ...

    Los múltiplos de 7 son 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, ...

    De lo anterior se deduce que el LCD es 35.

    Halla el LCD entre12, 13 y 34.

    Solución:

    Paso 1. ¿Cuáles son los denominadores?

    Los denominadores son 2, 3 y 4

    Paso 2. Escribe el múltiplo de estos números.

    Los múltiplos de 2 son 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, ...

    Los múltiplos de 3 son 0, 3, 6, 9, 12, 15, 18, 21, 24 , 27, 30, 33, 36, ...

    Los múltiplos de 4 son 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, ...

    Verás que 12 y 24 son múltiplos comunes de 2, 4 y 6. Pero queremos el mínimo común múltiplo. Por tanto, nuestro mínimo común múltiplo es 12. Esto significa que nuestro LCD es 12.

    3. La diferencia entre dos números cualesquiera de una lista no es superior a 10.

    Todo esto debe tenerse en cuenta antes de aplicar este método , porque te ayuda a mantenerte dentro del rango de tu tabla de multiplicar.

    Método del producto de factores primos

    El método del producto de factores primos se realiza escribiendo cada número de un conjunto como producto de sus factores primos. Recuerda que un factor primo es un número primo que divide a otro número sin resto.

    Encuentra el LCD entre 1124 y 710.

    Solución:

    Paso 1: Escribe los denominadores.

    Los denominadores son; 24 y 10.

    Paso2: Expresa cada denominador como producto de su factor primo. Para conseguirlo, tienes que seguir unos sencillos subpasos.

    Subpaso A: Dibuja una tabla de columnas con el denominador en la segunda columna.

    24

    Subpaso B: Utiliza el factor más pequeño del denominador y divide el número gradualmente hasta llegar a 1. Recuerda que el factor se escribe en la primera columna.

    2

    24

    12

    2

    24

    2

    12

    6

    2

    24

    2

    12

    2

    6

    3

    2

    24

    2

    12

    2

    6

    3

    3

    1

    Subpaso C: Escribe todos los factores de la primera columna como producto.

    2

    24

    2

    12

    2

    6

    3

    3

    1

    Repite el mismo paso para el otro denominador y tendrías

    2

    10

    5

    5

    1

    Paso 3: Ordena estos factores primos que se multiplican y rodea los factores semejantes.

    Mínimo común denominador Tercer paso del método del factor primo para hallar el LCD StudySmarterTercer paso del método del factor primo para hallar el LCD, StudySmarter Originals

    Esto significa que el factor común entre 24 y 10 es 2.

    Cuarto paso: Multiplica el resto de los factores que no están encerrados en un círculo por tu factor común.

    Mínimo común denominador Cuarto paso del método del factor primo para hallar el LCD StudySmarter

    Cuarto paso del método del factor primo para hallar la VCL, StudySmarter Originals

    Así pues, nuestro LCD es

    2×5×2×2×3=120

    Método combinado del producto del factor primo

    Como variación del Método del Producto del Factor Primario, el Método del Producto del Factor Primario Combinado requiere que encuentres los factores primos de los denominadores en una sola tabla. Una vez que te hayas familiarizado con la técnica, este método tiene la ventaja de ser más conciso.

    Encuentra el LCD entre 1124 y 710.

    Solución:

    Paso 1. Escribe los denominadores.

    Los denominadores son 24 y 10.

    Paso 2. Crea una tabla con el número de columnas según el número de denominadores. En este caso, el número de columnas es 3 (una más que el número de denominadores). Deja la primera columna para los factores.

    24

    10

    Paso 3. Utiliza el factor primo más pequeño para dividir los denominadores. Ten en cuenta que es posible que un factor sólo pueda dividir un denominador y no pueda dividir el resto. En los casos en que el factor no pueda dividir uno de los números de la columna del denominador, escribe el mismo número en la celda de abajo. Sólo necesitas que ese factor divida al menos uno de los denominadores. Es más fácil probando primero con los números más pequeños, como 2,3, ... Recuerda que el factor se escribe en la primera columna.

    2

    24

    10

    12

    5

    Observa que en este caso 2 puede dividir tanto a 24 como a 10 sin resto.

    2

    24

    10

    2

    12

    5

    6

    5

    Observa que 2 puede dividir a 12 pero no puede dividir a 5, por lo que seguimos bajando 5 en la casilla de abajo.

    2

    24

    10

    2

    12

    5

    2

    6

    5

    3

    5

    2

    24

    10

    2

    12

    5

    2

    6

    5

    3

    3

    5

    1

    5

    2

    24

    10

    2

    12

    5

    2

    6

    5

    3

    3

    5

    5

    1

    5

    1

    1

    Paso 4: Escribe todos los factores de la primera columna como producto.

    2

    24

    10

    2

    12

    5

    2

    6

    5

    3

    3

    5

    5

    1

    5

    1

    1

    Cuando te queden unos en la última fila, puedes calcular el LCD como el producto de los factores de la primera columna.

    El LCD entre los denominadores 24 y 10 es entonces

    2×2×2×3×5=120

    El método del producto combinado de factores primos es el mejor método para un conjunto grande de denominadores.

    Aplicaciones del LCD

    Como ya hemos dicho, el mínimo común denominador se utiliza para simplificar fracciones que implican sumas y restas. También se utiliza para ordenar fracciones en orden ascendente y descendente. Veamos algunos ejemplos para comprender mejor sus aplicaciones.

    LCD en fracciones

    Simplifica

    12-14

    Solución:

    Paso 1. Halla la LCD de los denominadores.

    Utilizando el método de las reglas LCD, la regla dice que si uno de los denominadores es múltiplo de los otros denominadores, entonces la LCD es dicho múltiplo.4 es múltiplo de 2, por lo que la LCD entre 2 y 4 es 4.Paso 2. Utiliza el LCD como denominador general. A continuación, divide el LCD por cada denominador y multiplícalo por el numerador.

    12-14=1×(4÷2)-1×(4÷4)4

    Paso 3. Resuelve la aritmética.

    1×(2)-1×(1)4==2-14=14

    Simplifica

    35+57+128

    Solución:

    Paso 1: Halla el LCD de los denominadores.

    Utiliza el método del producto combinado de factores primos.

    2

    5

    7

    28

    2

    5

    7

    14

    5

    5

    7

    7

    7

    1

    7

    7

    1

    1

    1


    El LCD de 35, 57 y 128 es el producto de los números de la primera columna, es decir

    2×2×5×7=140.

    Paso 2: Utiliza la LCD como denominador general. Luego divide la LCD por cada denominador y multiplícalo por el numerador.

    35+57+128=3×(140÷5)+5×(140÷7)+1×(140÷28)140

    Paso 3: Resuelve la aritmética.

    3×(28)+5×(20)+1×(5)140==84+100+5140=189140

    Paso4: Comprueba si algún número puede dividirse entre el numerador y el denominador para simplificar tu fracción.

    Divide el numerador y el denominador entre 7

    id="5110665" role="matemáticas" 189÷7140÷7=2720 =1720

    LCD en la comparación de fracciones

    Con la aplicación de la LCD ahora se pueden comparar fracciones para averiguar qué fracciones son mayores o menores. A partir de este conocimiento, las fracciones pueden ordenarse de forma ascendente o descendente.

    Ordena las siguientes fracciones en orden descendente:25' 16, 320 y 18
    Solución:Al ordenar fracciones en orden descendente, se espera que escribas las fracciones de mayor a menor.Paso 1. Halla el LCD de las fracciones dadas.Utilizando el método del factor primo combinado, tenemos;

    2

    6

    20

    8

    5

    2

    3

    10

    4

    5

    2

    3

    5

    2

    5

    3

    3

    5

    1

    5

    5

    1

    5

    1

    5

    1

    1

    1

    1

    La LCD de los denominadores 6, 20, 8 y 5 es

    2×2×2×3×5=120.

    Paso 2: Utiliza el LCD como denominador general. A continuación, divide el LCD por cada denominador y multiplícalo por el numerador por separado.

    16=1×(120÷6)120=1×(20)120=20120320=3×(120÷20)120=3×(6)120=1812018=1×(120÷8)120=1×(15)120=1512025=2×(120÷5)120=2×(24)120=48120

    Paso3: Utiliza sólo los numeradores en negrita. Ahora ordénalos de mayor a menor.

    48, 20, 18 y 15, es decir

    25' 16, 320 y 18

    Mínimo común denominador - Puntos clave

    • El mínimo común denominador (MCD) es el múltiplo más pequeño que es común entre un conjunto de denominadores.
    • Hay cuatro métodos que se pueden utilizar para hallar el LCD: las reglas del LCD, el listado de múltiplos, el producto del factor primo y el producto combinado del factor primo.
    • El LCD se aplica al sumar y restar fracciones. Del mismo modo, se utiliza al ordenar fracciones en orden ascendente o descendente.
    mínimo común denominador mínimo común denominador
    Aprende con 0 tarjetas de mínimo común denominador en la aplicación StudySmarter gratis
    Regístrate con email

    ¿Ya tienes una cuenta? Iniciar sesión

    Preguntas frecuentes sobre mínimo común denominador
    ¿Qué es el mínimo común denominador?
    El mínimo común denominador (MCD) es el menor múltiplo común compartido por dos o más denominadores.
    ¿Cómo se calcula el mínimo común denominador?
    Para calcular el MCD, encuentra el mínimo común múltiplo (MCM) de los denominadores.
    ¿Por qué es importante el mínimo común denominador?
    El MCD es importante para sumar o restar fracciones con diferentes denominadores, unificándolos bajo un denominador común.
    ¿Cuándo usamos el mínimo común denominador?
    Usamos el MCD al operar con fracciones, especialmente al sumarlas o restarlas, para que tengan el mismo denominador.
    Guardar explicación

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 13 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.