Resolución y representación gráfica de desigualdades cuadráticas

Anteriormente, habíamos aprendido a representar gráficamente ecuaciones cuadráticas para encontrar sus raíces. Al visualizar gráficamente estas ecuaciones cuadráticas, pudimos determinar el comportamiento de la curva para una ecuación cuadrática dada. En esta lección, pretendemos representar gráficamente las desigualdades cuadráticas de forma similar a como lo habíamos hecho con las ecuaciones cuadráticas.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.
Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Resolución y representación gráfica de desigualdades cuadráticas?
Ask our AI Assistant

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Resolución y representación gráfica de desigualdades cuadráticas

  • Tiempo de lectura de 13 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Desigualdades Cuadráticas

    Antes de empezar, definamos una desigualdad cuadrática.

    Una desigualdad cuadrática es un polinomio de segundo grado que utiliza un signo de desigualdad en lugar de un signo igual.

    Hay cuatro tipos de desigualdades cuadráticas (en dos variables) que trataremos en este tema, a saber

    1. y>ax2+bx+c2. yax2+bx+c 3. y<ax2+bx+c4. yax2+bx+c

    Una desigualdad cuadrática en una variable sólo tiene una incógnita en la expresión cuadrática y puede representarse en un único eje o recta numérica, que suele ser el eje x. La gráfica de una desigualdad cuadrática en dos variables está formada por todos los pares ordenados (x, y) que son soluciones de la desigualdad cuadrática dada.

    Una inecuación cuadrática en dos variables describe una región en el plano cartesiano con una parábola (curva) como límite. Aquí consideramos tanto el eje x como el eje y.

    Las formas estándar de las inecuaciones cuadráticas (en una variable) son:

    1. ax2+bx+c>02. ax2+bx+c03. ax2+bx+c<04. ax2+bx+c0

    Resolución de desigualdades cuadráticas en una variable

    Resolver inecuaciones cuadráticas en una variable es esencialmente similar a resolver ecuaciones cuadráticas. La única diferencia aquí es que nos interesa encontrar el intervalo de números reales para el que se satisface la desigualdad, en lugar de igualar a cero la expresión dada.

    En este apartado, utilizaremos métodos básicos de factorización para resolver dichas desigualdades cuadráticas. A continuación se explican los pasos de esta técnica.

    Paso1: Escribe la inecuación cuadrática en forma general, es decir, con ax2 + bx + c, donde a 0, en un lado de la inecuación;

    Paso2: Factoriza completamente la expresión cuadrática de la desigualdad;

    Paso3: Identifica las raíces de la desigualdad, mediante la ecuación correspondiente;

    Paso4 : Determina el comportamiento de la desigualdad cuadrática:

    1. Si la desigualdad es de la forma (x-a)(x-b)0, cuando a<b entonces axb;

    2. Si la desigualdad es de la forma (x-a)(x-b)0,cuando a<b entonces ax or xb.

    Paso 5: Expresa la solución en notación de desigualdades o en notación de intervalos

    Los casos a) y b) son similares para las desigualdades < y > respectivamente.

    Graficar desigualdades cuadráticas en una variable

    Para evaluar desigualdades cuadráticas en una variable, también podemos utilizar la gráfica del polinomio dado. La tabla siguiente describe la representación gráfica para cada caso de desigualdad que puede tener la cuadrática.

    La región sombreada en los gráficos de abajo representa la solución correcta de la desigualdad cuadrática dada

    Casoa > 0 a < 0
    1ax2 + bx + c < 0
    Método:
    1. Gráfica y = ax2 + bx + c
    2. Como y es negativa, determina los valores de x para los que la gráfica está por debajo del eje x
    3. Para >, no incluyas los intersticios x en la solución. Esto se indica mediante círculos abiertos (como se ve en la gráfica)
    4. Escribe la solución en términos de su notación de intervalo (como se muestra debajo de cada gráfica)

    Gráfica de la desigualdad Caso 1 (a), Aishah Amri - StudySmarter Originals

    Solución: x1 < x < x2

    Gráfico de la desigualdad Caso 1 (b), Aishah Amri - StudySmarter Originals

    Solución:x < x1 o x > x2
    2ax2 + bx + c ≥ 0
    Método:
    1. Gráfica y = ax2 + bx + c
    2. Como y es positiva, determina los valores de x para los que la gráfica está por encima del eje x
    3. Para ≤, incluye los intersticios x en la solución. Esto se indica mediante círculos cerrados (como se ve en la gráfica)
    4. Escribe la solución en términos de su notación de intervalo (como se muestra debajo de cada gráfica)

    Gráfico de la desigualdad Caso 2 (a), Aishah Amri - StudySmarter Originals

    Solución:x ≤ x1 o x ≥ x2

    Gráfico de desigualdad Caso 2 (b), Aishah Amri - StudySmarter Originals

    Solución: x1 ≤ x ≤ x2

    Resuelve la desigualdad x2+5x-6.

    Solución

    Paso 1: Llevando -6 al lado izquierdo de la desigualdad, obtenemos

    x2+5x+60

    Factorizando esta desigualdad cuadrática obtenemos

    (x+2)(x+3)0

    Paso2: Ahora necesitamos encontrar las raíces de la desigualdad. Nuestro primer instinto aquí puede ser utilizar la Propiedad del Producto Cero. Sin embargo, ten en cuenta que la Propiedad del Producto Cero se utiliza para ecuaciones, no para desigualdades. En lugar de eso, tenemos que resolver las intersecciones x cambiando la desigualdad por una ecuación y ajustando el signo de la desigualdad a la situación actual en función de las intersecciones x encontradas. Esto se muestra a continuación.

    (x+2)(x+3)=0x+2=0x=-2andx+3=0x=-3

    Paso3: A partir de la tabla, vemos que esta desigualdad obedece al Caso 2 con a > 0. Como y es positiva, debemos elegir los valores de x para los que la curva está por encima del eje x.

    Paso 4: Ahora, escribiendo la solución en notación de intervalo, obtenemos

    x-2 and x-3

    La gráfica se muestra a continuación.

    Ejemplo 1, Aishah Amri - StudySmarter Originals

    Resuelve la desigualdad 10x2<19x-6.

    Solución

    Paso 1: Llevando 19x y -6 al lado izquierdo de la desigualdad, obtenemos

    10x2-19x+6<0

    Factorizando esta desigualdad cuadrática obtenemos

    (5x-2)(2x-3)<0

    Paso 2: Al igual que en el ejemplo anterior, trataremos nuestra desigualdad anterior como una ecuación para determinar sus raíces como se indica a continuación.

    (5x-2)(2x-3)=05x-2=0x=25and 2x-3=0x=32

    Paso3: Consultando de nuevo nuestra tabla, vemos que esta desigualdad obedece al Caso 1 con a > 0. Como y es negativa, debemos elegir los valores de x para los que la curva está por debajo del eje x.

    Paso 4: Así, escribiendo la solución en su correspondiente forma de notación interválica, tenemos

    25 < x<32

    La gráfica se muestra a continuación.

    Ejemplo 2, Aishah Amri - StudySmarter Originals

    Graficación de inecuaciones cuadráticas en dos variables

    La representación gráfica de desigualdades cuadráticas (en dos variables) utiliza los mismos principios que la representación gráfica de desigualdades lineales. A continuación encontrarás un método detallado para resolver estos problemas.

    Paso 1: Dibuja la función cuadrática y = ax2 + bx + c. Determina la naturaleza de la parábola basándote en la desigualdad dada.

    • Dibuja una parábola discontinua para las inecuaciones con < o > para describir que los puntos de la parábola no son soluciones.

    • Dibuja una parábola sólida para las desigualdades con ≤ o ≥ para describir que los puntos de la parábola son soluciones.

    Glencoe McGraw-Hill, Álgebra 2 (2008)

    Paso 2: Toma un punto (x1, y1) dentro de la parábola. Comprueba si este punto es una solución de la desigualdad.

    y1?a(x1)2+b(x1)+c

    Glencoe McGraw-Hill, Álgebra 2 (2008)

    Paso 3: Sombrea la región correcta que satisfaga la desigualdad.

    • Si (x1, y1) es una solución, sombrea la región dentro de la parábola.

    • Si (x1, y1) no es una solución, sombrea la región fuera de la parábola.

    Glencoe McGraw-Hill, Álgebra 2 (2008)

    A continuación encontrarás varios ejemplos prácticos para demostrar esta técnica.

    Grafica la desigualdad cuadrática y>-x2+x+6.

    Solución

    Paso 1: Empezamos graficando el polinomio y=-x2+x+6

    El coeficiente de x2 es negativo, por lo que la curva se abre hacia abajo. Factorizando esta expresión, obtenemos

    y=-(x2-x-6)y=-(x+2)(x-3)

    Igualando a cero, tenemos raíces en x=-2 and x=3.

    Como la desigualdad es >, nuestra curva debe ser una línea discontinua. La gráfica se muestra a continuación.

    Ejemplo 3 (1), Aishah Amri - StudySmarter Originals

    Paso 2: Probemos ahora un punto dentro de la parábola, digamos (1, 2). Introduciendo x = 1 e y = 2 en nuestra desigualdad cuadrática, encontramos que

    2>-(1)2+(1)+62>6

    Paso3: 2 no es mayor que 6, por lo que la desigualdad falla. Por tanto, (1, 2) no es una solución de la desigualdad y debemos sombrear la región exterior a la parábola, como se muestra a continuación.

    Ejemplo 3 (2), Aishah Amri - StudySmarter Originals

    Ahora, si consideramos la desigualdad cuadrática en una variable, obtenemos

    -x2+x+6<0

    Por tanto, y es negativa y debemos elegir los valores de x para los que la curva está por debajo del eje x. La gráfica final se muestra a continuación.

    Ejemplo 3 (3), Aishah Amri - StudySmarter Originals

    Utilizar la fórmula cuadrática para resolver inecuaciones cuadráticas

    Al igual que para resolver ecuaciones cuadráticas que no pueden factorizarse mediante técnicas de factorización estándar, podemos aplicar la Fórmula Cuadrática para evaluar desigualdades cuadráticas.

    Grafica la desigualdad cuadrática y5x2-10x+1.

    Solución

    Paso 1: Como antes, intentaremos primero representar gráficamente el polinomio y=5x2-10x+1.

    El coeficiente de x2 es positivo, por lo que la curva se abre. Observa que no podemos factorizar esta expresión utilizando los métodos de factorización estándar. Por tanto, aplicaremos la Fórmula Cuadrática para determinar las raíces.

    Dado que

    a=5, b=-10, c=1

    evaluamos

    x= -b±b2-4ac2ax=-(-10)±(-10)2-4(5)(1)2(5)x=10±8010x=10±4510x=1±255

    Así, obtenemos dos raíces irracionales

    x=1-2550.11 (correct to 2 decimal places)x=1+2551.89 (correct to 2 decimal places)

    Como la desigualdad es ≤, nuestra curva debe ser una recta continua. La gráfica se muestra a continuación.

    Ejemplo 4 (1), Aishah Amri - StudySmarter Originals

    Paso 2: Comprobemos ahora un punto dentro de la parábola, digamos (1, -1). Introduciendo x = 1 e y = -1 en nuestra desigualdad, encontramos que

    -15(1)2-10(1)+1-1-4

    Paso3: -1 no es menor ni igual que -4, por lo que la desigualdad falla. Por tanto, (1, -1) no es una solución de la desigualdad y debemos sombrear la región exterior a la parábola como se indica a continuación.

    Ejemplo 4 (2), Aishah Amri - StudySmarter Originals

    Ahora, si consideramos la desigualdad cuadrática en una variable, obtenemos

    5x2-10x+60

    Por tanto, y es positiva y debemos elegir los valores de x para los que la curva está por encima del eje x. La gráfica final se muestra a continuación.

    Ejemplo 4 (3), Aishah Amri - StudySmarter Originals

    Ejemplos reales con desigualdades cuadráticas

    Las desigualdades cuadráticas pueden ayudar a modelizar ciertos tipos de situaciones del mundo real, como las finanzas, el movimiento y la arquitectura. He aquí un ejemplo que muestra cómo podemos aplicar las desigualdades cuadráticas en esos casos.

    La altura de una pelota lanzada entre dos personas puede modelizarse mediante la función

    h(x)=-7x2+15x+2,

    donde la altura h viene dada en metros y el tiempo x en segundos. ¿En qué momento de su vuelo está la pelota a menos de 6 metros del suelo?

    Solución

    La altura de la pelota se describe mediante la función h.

    Queremos encontrar los valores de x para los que h(x) ≤ 6.

    h(x)6-7x2+15x+26-7x2+15x+2-60-7x2+15x-40

    Haciendo la gráfica de la función y = -7x2 + 15x - 4, obtenemos el siguiente esquema.

    Ejemplo 5 (1), Aishah Amri - StudySmarter Originals

    Las raíces pueden hallarse utilizando la Fórmula Cuadrática, ya que la expresión -7x2 + 15x - 4 no puede factorizarse más utilizando métodos de factorización estándar. Al hacerlo, obtuvimos las dos raíces siguientes, correctas con dos decimales: x ≈ 0,31 y x ≈ 1,83.

    Considerando ahora la desigualdad, la región para la que se satisface la expresión se muestra a continuación.

    Ejemplo 5 (2), Aishah Amri - StudySmarter Originals

    Observa que la gráfica está por debajo del eje x cuando x < 0,31 o x > 1,83. De aquí concluimos que la pelota está a menos de 6 metros del suelo durante los primeros 0,31 segundos de su vuelo y de nuevo después de 1,83 segundos hasta que la pelota toca el suelo a los 2,14 segundos.

    Graficar y resolver desigualdades cuadráticas - Puntos clave

    • La gráfica de una desigualdad cuadrática está formada por todos los pares ordenados (x, y) que son soluciones de la desigualdad cuadrática dada.
    • Resolución de inecuaciones cuadráticas en una variable
      1. Escribe la desigualdad cuadrática en forma general: ax2 + bx + c, donde a 0
      2. Factoriza completamente la expresión cuadrática de la desigualdad
      3. Identificalas raíces de la desigualdad
      4. Expresa la solución en notación de desigualdades o en notación de intervalos
      5. Determina el comportamiento de la desigualdad cuadrática
    • Para las desigualdades < o >, la parábola es una línea discontinua. Esto demuestra que los puntos de la parábola no son soluciones.
    • Para las desigualdades ≤ o ≥, la parábola es continua. Esto demuestra que los puntos de la parábola son soluciones.
    • Gráfica de las desigualdades cuadráticas en dos variables
      1. Dibuja la función cuadrática y = ax2 + bx + c. Determina la naturaleza de la parábola a partir de la desigualdad dada.
      2. Toma un punto (x1, y1) dentro de la parábola. Comprueba si este punto es una solución de la desigualdad.
      3. Sombrea la región correcta que satisfaga la desigualdad.
    • Para ax2+ bx + c < 0, identifica los valores de x para los que la gráfica está por debajo del eje x (ya que y es negativa).
      • La solución es x1 < x < x2
    • Para ax2+ bx + c > 0 identifica los valores x para los que la gráfica está por encima del eje x (ya que y es positiva)
      • La solución es x < x1 o x > x2
    Resolución y representación gráfica de desigualdades cuadráticas Resolución y representación gráfica de desigualdades cuadráticas
    Aprende con 0 tarjetas de Resolución y representación gráfica de desigualdades cuadráticas en la aplicación StudySmarter gratis
    Regístrate con email

    ¿Ya tienes una cuenta? Iniciar sesión

    Preguntas frecuentes sobre Resolución y representación gráfica de desigualdades cuadráticas
    ¿Cómo se resuelven las desigualdades cuadráticas?
    Se factorizan, se encuentran los puntos críticos y se analiza el signo de la expresión en los intervalos resultantes.
    ¿Qué representa gráficamente una desigualdad cuadrática?
    Representa una parábola y las soluciones son los intervalos donde la parábola está por encima o por debajo del eje x.
    ¿Cómo se encuentra el dominio de las desigualdades cuadráticas?
    El dominio son todos los valores de x, a menos que la desigualdad implique una restricción específica.
    ¿Qué significa una solución de una desigualdad cuadrática?
    Son los intervalos de x donde la desigualdad se cumple, esto es, donde la expresión cuadrática es positiva o negativa según la desigualdad.
    Guardar explicación

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 13 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.