Este teorema del círculo se ilustra a continuación. Afirma que para cualquier triángulo inscrito en el interior del círculo con todos los puntos tocando la circunferencia y la hipotenusa como diámetro, el ángulo opuesto a la hipotenusa será rectángulo.
Teorema del círculo 1: El ángulo en un semicírculo es 90 °, Ben Cairns, StudySmarter
Demostración del teorema 1: El ángulo en un semicírculo es de 90°.
Trazamos una línea descendente desde el ángulo opuesto a la hipotenusa hasta el centro. Esto significará que hemos dividido el triángulo en otros dos triángulos, cada uno isósceles, con dos lados de longitud r (utilizamos r para denotar la longitud del radio). Esto significa que cada triángulo tiene dos ángulos iguales. Podemos dibujarlo a continuación:
Teorema del círculo 1 Prueba, Ben Cairns, StudySmarter
Observando el triángulo mayor, sabemos que 2x + 2y = 180°, ya que los ángulos deben sumar 180 °. Como 2x + 2y = 180°, se deduce -dividiendo por dos- que x + y = 90°. El ángulo en la circunferencia viene dado por x + y, y por tanto, el ángulo es rectángulo. QED
Teorema 2: El ángulo en el centro es el doble del ángulo en la circunferencia
En este caso, el ángulo subtendido por un arco en el centro es el doble del ángulo subtendido en la circunferencia. Esto se muestra a continuación. Lo que es importante observar es que no importa dónde esté el punto en el arco, siempre que se encuentre entre los dos ángulos no marcados. Si esto ocurre, el teorema seguirá cumpliéndose.
El ángulo en el centro es el doble del ángulo en la circunferencia, Ben Cairns-StudySmarter
Demostración del teorema 2: El ángulo en el centro es el doble del ángulo en la circunferencia
Construyamos la misma figura, pero ahora construyamos también una recta desde el punto "x" hasta el centro. Esto nos da dos triángulos isósceles con dos lados de longitud r, y dos lados de la misma longitud. También tendremos dos ángulos iguales en cada isósceles. Etiquetaremos cada ángulo, como se muestra a continuación.
Prueba del Teorema del Círculo 2, Ben Cairns-StudySmarter
Para demostrar el teorema, tenemos que demostrar que 2 (a + b) = c.
Utilizando los hechos de que hay 180 ° en un triángulo y 360 ° alrededor de un punto, podemos formar tres ecuaciones: 2a + z = 180, 2b + t = 180 y z + t + c = 360 °.
Podemos reordenar la primera ecuación a z = 180-2a, y reordenar la segunda ecuación a t = 180 ° -2b.
Ahora podemos sustituir estas ecuaciones en la tercera ecuación, para obtener 180 ° -2a + 180 ° -2b + c = 360 °.
Esto se simplifica a c-2a-2b = 0, que puede simplificarse aún más a 2 (a + b) = c. QED
Teorema 3: Los ángulos de la misma cuerda en el mismo segmento son iguales
Si tenemos dos triángulos dentro de una circunferencia con los tres ángulos tocando la circunferencia, y los triángulos comparten un lado (también conocido como cuerda común) entonces el tercer ángulo es el mismo en ambos triángulos, siempre que estos terceros ángulos estén en el mismo segmento. Esto se muestra a continuación.
Teorema 3 del círculo, Ben Cairns, StudySmarter
Demostración del teorema 3: Los ángulos de la misma cuerda en el mismo segmento son iguales
Empecemos dibujando otro triángulo que comparta la cuerda común, pero esta vez conectaremos la línea con el centro. Se trata de la misma forma vista en el teorema 2, por lo que podemos invocar este teorema y llamar al ángulo 2x. Esto se muestra a continuación.
Teorema del círculo 3 Prueba, Ben Cairns, StudySmarter
Como hemos utilizado el teorema 2, no importa dónde pongamos el ángulo x en el arco, por lo que el teorema queda demostrado. QED
Teorema 4: Los ángulos opuestos de un cuadrilátero cíclico suman 180°.
Por cuadrilátero cíclico entendemos una forma de cuatro lados, todos cuyos ángulos tocan una circunferencia. Cuando esto ocurre, los ángulos opuestos del cuadrilátero suman 180°.
Teorema del círculo 4, Ben Cairns, StudySmarter
En este caso, tendríamos a + c = 180°, así como b + d = 180°.
Prueba del teorema 4: Los ángulos opuestos en un cuadrilátero cíclico suman 180°.
Trazamos una línea desde cada ángulo hasta el centro. Como ésta va del círculo al centro, es un radio, lo que significa que hemos creado cuatro triángulos isósceles que tienen pares de ángulos iguales. Esto se muestra a continuación.
Teorema del círculo 4, Ben Cairns, StudySmarter
Para demostrar que los ángulos opuestos suman 180 °, debemos demostrar que x + y + z + t = 180 °.
Los ángulos de un cuadrilátero suman 360 °.
Esto significa que z + y + z + t + t + x + x + y = 360 °.
Esto puede simplificarse a 2 (x + y + z + t) = 360 °, por lo que x + y + z + t = 180 °. QED
Teorema 5: Teorema del segmento alterno
Supongamos que trazamos una tangente a una circunferencia. En el punto en que la tangente toca al círculo, hay una esquina de un triángulo. Los otros dos vértices del triángulo también están sobre la circunferencia. En este caso, el ángulo entre la tangente y el triángulo es igual al ángulo adyacente en el triángulo. Esto se muestra a continuación.
Teorema del círculo 5, Ben Cairns, StudySmarter
Demostración del teorema del segmento alterno
Para demostrarlo sólo necesitas demostrarlo por un lado, ya que no importa qué triángulo elijamos. Construye un triángulo como el anterior y, a continuación, une cada vértice con el centro. De nuevo, hemos creado tres triángulos isósceles, todos ellos con un par de ángulos correspondientes. Llamaremos a al ángulo entre la tangente y el triángulo a. Todo esto se muestra a continuación.
Teorema del círculo 5 Prueba, Ben Cairns, StudySmarter
Nuestro objetivo es demostrar que a = z + y.
Como el radio es perpendicular a la tangente en el punto en que ésta toca al círculo (por definición), sabemos que a + x = 90 °.
Como los ángulos de un triángulo suman 180 °, sabemos que 2x + 2y + 2z = 180 °, por lo que x + y + z = 90 °.
Podemos reescribir nuestra primera ecuación como x = 90° - a, y luego sustituirla en la segunda ecuación, para obtener 90 ° -a + y + z = 90 °, que podemos reordenar como a = z + y
Éste era nuestro objetivo. QED
Teorema 6: Las tangentes de un punto a una circunferencia tienen la misma longitud
Supongamos que dibujamos una circunferencia y elegimos cualquier punto en el mismo plano que la circunferencia, siempre que el punto esté fuera de la circunferencia. Entonces, podemos trazar dos rectas tangentes desde el punto a la circunferencia. Además, la distancia del punto a la circunferencia será la misma en ambos casos.
Teorema del Círculo 6, Ben Cairns-EstudianteMásInteligente
Por tanto, en este caso, la distancia AP es la misma que la distancia AQ.
Prueba del teorema 6: Las tangentes de un punto a una circunferencia tienen la misma longitud
Tracemos rectas desde el punto tangente al centro, recordando que el radio en un punto tangente es perpendicular a la tangente, lo que nos da entonces
Teorema del círculo 6 Prueba, Ben Cairns, StudySmarter
Esto nos da \((AO)^2 = r^2 + (AP)^2\) y \((AO)^2 = r^2 + (AQ)^2\)
Igualando las dos expresiones para \((AO)^2\), llegamos a
\((AP)^2 = (AQ)^2\)
\(AP = AQ\)
La longitud es siempre positiva, por lo que se ignoran las soluciones negativas.
Teorema 7: Un radio perpendicular a una cuerda la biseca
Supongamos que tenemos una cuerda cualquiera en un círculo, y trazamos una recta desde el radio hasta el límite del círculo, y esta recta es perpendicular a la cuerda. En este caso, el radio bisecará a la cuerda.
Teorema del círculo 7, Ben Cairns, StudySmarter
Demostración del teorema7: Un radio perpendicular a una cuerda la biseca
Trazamos una recta de O a M y también de O a N.
Teorema del círculo 7 Prueba, Ben Cairns, StudySmarter
Para que sea una bisección, necesitamos que AN tenga la misma longitud que AM.
Obtenemos \((OM)^2 = (OA)^2 + (AM)^2\) y \((ON)^2 = (OA)^2 + (AN)^2\). Como ON = r = OM, podemos hacer que ambos sean iguales entre sí, para obtener \((OA)^2 + (AN)^2 = (OA)^2 + (AM)^2\), de lo que obtenemos \((AN)^2 = (AM)^2\) y se deduce que AN = AM.
Como la longitud es positiva, entonces AM = AN. QED
Ejemplos de uso de los teoremas del círculo
Ejemplo de uso de los teoremas del círculo - 1
Ex
Halla x.
Por nuestro teorema 2, sabemos que el ángulo BOC será 2 * 70° = 140°.
Como la recta OD biseca este ángulo, sabemos que el ángulo DOC es de 70°.
Como OC es un radio, y DC es una tangente en C, entonces OC es perpendicular a DC, y por tanto el ángulo OCD es 90°.
Esto significa que ahora podemos hallar x. Como los ángulos de un triángulo suman 180
tenemos 90° + 70° + x = 180 °, lo que da x como 20°.
Ejemplo de uso de los teoremas del círculo - 2
x + y + z = 260. Halla x, y y z
Por el Teorema 2, y = 2x, y por los cuadriláteros cíclicos, obtenemos x + z = 180°, que puede reordenarse en z = 180° - x. Podemos entonces introducir estos valores en nuestra ecuación original, para obtener x + 2x + 180 - x = 260. Esto se simplifica a 2x = 80°. Esto se simplifica a 2x = 80°, lo que da x = 40°, luego y = 80° y z = 140°.
Teoremas del círculo - Puntos clave
Conoce cuáles son los siete teoremas del círculo y cómo demostrarlos:
Teorema 1: el ángulo en una semicircunferencia es 90º
Teorema 2: el ángulo en el centro es el doble del ángulo en la circunferencia
Teorema 3: los ángulos de la misma cuerda en el mismo segmento son iguales
Teorema 4: los ángulos opuestos de un cuadrilátero cíclico suman 180º
Teorema 5: Teorema del segmento alterno
Teorema 6: las tangentes de un punto a una circunferencia tienen la misma longitud
Teorema 7: un radio perpendicular a una cuerda la biseca
Aprende a aplicar estos teoremas a problemas de examen
Aprende más rápido con las 0 tarjetas sobre Teoremas del Círculo
Regístrate gratis para acceder a todas nuestras tarjetas.
Preguntas frecuentes sobre Teoremas del Círculo
¿Qué es un teorema del círculo?
Un teorema del círculo se refiere a propiedades matemáticas que describen relaciones entre los ángulos, radios y cuerdas en un círculo.
¿Cuántos teoremas del círculo existen?
Existen varios teoremas del círculo como el de la tangente, el de la secante y el ángulo inscrito, entre otros.
¿Qué establece el Teorema del ángulo inscrito?
El Teorema del ángulo inscrito establece que el ángulo inscrito en un círculo es la mitad del ángulo central que abarca el mismo arco.
¿Qué dice el Teorema de la tangente y la secante?
El Teorema de la tangente y la secante establece que el cuadrado de la longitud de la tangente es igual al producto de la longitud de la secante y su segmento externo.
¿Cómo te aseguras de que tu contenido sea preciso y confiable?
En StudySmarter, has creado una plataforma de aprendizaje que atiende a millones de estudiantes. Conoce a las personas que trabajan arduamente para ofrecer contenido basado en hechos y garantizar que esté verificado.
Proceso de creación de contenido:
Lily Hulatt
Especialista en Contenido Digital
Lily Hulatt es una especialista en contenido digital con más de tres años de experiencia en estrategia de contenido y diseño curricular. Obtuvo su doctorado en Literatura Inglesa en la Universidad de Durham en 2022, enseñó en el Departamento de Estudios Ingleses de la Universidad de Durham y ha contribuido a varias publicaciones. Lily se especializa en Literatura Inglesa, Lengua Inglesa, Historia y Filosofía.
Gabriel Freitas es un ingeniero en inteligencia artificial con una sólida experiencia en desarrollo de software, algoritmos de aprendizaje automático e IA generativa, incluidas aplicaciones de grandes modelos de lenguaje (LLM). Graduado en Ingeniería Eléctrica de la Universidad de São Paulo, actualmente cursa una maestría en Ingeniería Informática en la Universidad de Campinas, especializándose en temas de aprendizaje automático. Gabriel tiene una sólida formación en ingeniería de software y ha trabajado en proyectos que involucran visión por computadora, IA integrada y aplicaciones LLM.
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.