Presión y Densidad

¿Has intentado reventar un globo? Si pisas o te sientas encima de uno, al final estallará con un fuerte "bang", asustando a cualquiera que esté lo suficientemente cerca.

Pruéablo tú mismo

Scan and solve every subject with AI

Try our homework helper for free Homework Helper
Avatar

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Presión y Densidad

  • Tiempo de lectura de 9 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Sign up for free to save, edit & create flashcards.
Guardar explicación Guardar explicación
  • Fact Checked Content
  • reading time9 min
Tarjetas de estudio
Tarjetas de estudio
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time9 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Guardar explicación Guardar explicación

Saltar a un capítulo clave

    Reproducir como pódcast 12 minutos

    ¡Gracias por tu interés en el aprendizaje por audio!

    Esta función aún no está lista, pero nos encantaría saber por qué prefieres el aprendizaje por audio.

    ¿Por qué prefieres el aprendizaje por audio? (opcional)

    Enviar comentarios
    Reproducir como pódcast 12 minutos

    Pero, ¿por qué estalla? Los globos estallan debido a la relación entre la presión y la densidad (o, más concretamente, entre la presión y el volumen). En este artículo conoceremos la relación entre presión y densidad, ¡así que sigue leyendo para conocer la respuesta a nuestra pregunta!

    • Este artículo trata el tema de la presión y la densidad
    • En primer lugar, definiremos presión y densidad
    • A continuación, veremos la relación entre presión y densidad
    • A continuación, veremos la Ley de los Gases Ideales y cómo se relaciona con la presión y la densidad
    • Por último, trabajaremos con algunos ejemplos relacionados con la presión y la densidad

    Definición de presión

    La presión es la fuerza que ejerce una sustancia sobre otra, dividida por el área de la sustancia receptora. Para un gas, la presión es la fuerza ejercida por un gas sobre las paredes de su recipiente, dividida por el área del recipiente.

    Un gas ideal es un gas hipotético que se aproxima al comportamiento de los "gases reales". Las propiedades de un gas ideal son

    • Volumen despreciable
    • Masa despreciable
    • Ausencia de interacciones entre partículas
    • Colisiones totalmente elásticas (sin pérdida de energía cinética)
    • Las partículas están en movimiento constante

    A partir de ahora, cuando mencionemos gases, nos referiremos a gases ideales.

    Entonces, ¿cómo ejerce el gas esta presión? La respuesta son las colisiones. Los gases ideales están en constante movimiento y pueden moverse en todas direcciones. Por ello, están destinados a chocar entre sí y con las paredes de su recipiente. Cuando una partícula de gas choca con el recipiente, ejerce una fuerza sobre él y luego rebota. Cuanto mayor sea el número de colisiones, mayor será la presión.

    A continuación se muestra un diagrama de este proceso:

    Presión y densidad Ejemplo de presión StudySmarterFig.1-Las partículas de gas chocan con el recipiente para crear presión

    Las partículas de gas con las líneas que salen de ellas están chocando con el recipiente y están a punto de rebotar. Las demás partículas del recipiente también se están moviendo y también pueden colisionar con el recipiente en un momento posterior

    Definición de densidad

    Veamos ahora la definición de densidad.

    Ladensidad es la masa por volumen (m/V) de una sustancia. Para los gases, solemos utilizar la densidad numérica, que sería el número de moles (n) por volumen (n/V).

    La densidad responde a la pregunta: "¿Qué cantidad de esta sustancia contiene este volumen?".

    A continuación se muestra un ejemplo de cómo es la densidad en el caso de los gases:

    Presión y densidad Ejemplo de densidad StudySmarterFig.2-Cuando el volumen es el mismo, más moles=mayor densidad

    Para los gases, la fórmula de la densidad es

    $$\frac{n}{V}$$

    Donde n es el número de moles y V es el volumen

    Como el volumen de cada muestra es el mismo, el recipiente con más partículas de gas (a la derecha) tiene mayor densidad.

    Relación entre presión y densidad

    La presión y la densidad tienen una relación directa, lo que significa que si una aumenta, también lo hace la otra.

    Dicho matemáticamente

    $$P \propto \frac{n}{V}$$

    Donde P es la presión, n es el número de moles, V es el volumen y ∝ es el símbolo de "proporcional a".

    Esto también significa que la presión es directamente proporcional al número de moles, pero inversamente proporcional (una sube, la otra baja) al volumen, ya que el volumen está en el denominador.

    Cuando aumenta el volumen, disminuye la densidad total, por eso existe la relación inversa entre presión y volumen

    Entonces, ¿a qué se debe esto? Bueno, volvamos a nuestras definiciones. La presión se basa en dos cosas: el número de colisiones (es decir, más colisiones equivale a mayor fuerza) y el área del recipiente.

    Si el volumen es estable, y el número de moles aumenta (aumento neto de la densidad), el número de colisiones también va a aumentar.

    Presión y densidad Relación molar entre presión y densidad StudySmarterFig.3-El aumento de la densidad debido al aumento de moles provoca un aumento de la presión

    Básicamente, las partículas tienen menos espacio para moverse libremente, lo que aumenta la probabilidad de colisión.

    Hablemos ahora de lo que ocurre cuando se modifica el volumen (el número de moles es estable). Si disminuye el volumen, no sólo disminuirá el área, sino que también aumentará el número de colisiones.

    Presión y densidad Relación presión y densidad volumen StudySmarterFig.4-Cuando disminuye el volumen (aumenta la densidad), aumenta la presión

    La presión es fuerza/área, por lo que una disminución del volumen conlleva un aumento de la presión (más colisiones al haber menos espacio) y una disminución del área.

    En nuestra introducción, hablé del estallido de globos. La razón por la que el globo estalla es esta relación. Cuando pisas/te paras sobre el globo, estás disminuyendo el volumen, por lo que la presión debe aumentar. Cuando la presión es demasiado fuerte para que el globo la soporte, estalla.

    Ley de los gases ideales

    La relación entre presión y densidad se muestra mediante la Ley de los Gases Ideales.

    La ley de los gases ideales se utiliza para mostrar el comportamiento de los gases ideales y, por tanto, aproximar el comportamiento de los gases reales.

    La fórmula es

    $$PV=nRT$$

    Donde P es la presión, V es el volumen, n es el número de moles, R es la constante de los gases y T es la temperatura.

    Reorganicemos esta fórmula, para que muestre claramente la relación entre presión y densidad

    $$PV=nRT$$

    $$P=\frac{nRT}{V}$$

    $$P=\frac{n}{V}*\frac{RT}{V}=Density\cdot \frac{RT}{V}$$

    Como puedes ver, la ley de los gases ideales muestra que la presión y la densidad (n/V) son directamente proporcionales.

    Ejemplos de presión y densidad

    Ahora que entendemos la relación entre presión y densidad, ¡vamos a trabajar con algunos ejemplos!

    Un globo de 0,56 L contiene 1,35 mol de helio. Si se bombea la misma cantidad de helio a un globo de 0,76 L, ¿qué globo tendrá mayor presión?

    Veamos nuestra relación

    $$P \propto \frac{n}{V}$$En este caso, el volumen (V) aumenta. Como la presión y el volumen tienen una relación inversa , el globo de 0,56 L sería el de mayor presión

    A 1 atmósfera y 0 °C, el helio tiene una densidad de 0,179 g/L. Si se aumenta la presión a 2 atmósferas, ¿qué ocurrirá con la densidad?

    Echemos otro vistazo a nuestra fórmula:

    $$P \propto \frac{n}{V}$$

    Como la presión es directamente proporcional a la densidad, un aumento de la presión significa que también habrá un aumento de la densidad

    Hagamos una más, ¿vale?

    Un recipiente de 2,5 L (recipiente A) de hidrógeno tiene una presión de 1,35 atm. Otro recipiente (recipiente B) de hidrógeno tiene 3,2 L y una presión de 1,14 atm. ¿Qué recipiente tiene más moles de hidrógeno?

    Reorganicemos nuestra ecuación, para poder ver mejor esta relación:

    $$P \propto \frac{n}{V}$$

    $$PV \propto n$$

    Así pues, el producto de la presión y el volumen es directamente proporcional a los moles, lo que significa que la caja cuyo producto sea mayor tendrá más moles de gas

    $$PV \propto n$$

    $$(1,35\,atm)(2,5\,L) \propto n$$

    $$3,375\,atm*L \propto n$$

    $$PV \propto n$$

    $$(1,14\,atm)(3,2\,L) \propto n$$

    $$3,648,atm*L \propto n$$

    Como el recipiente B tiene un producto presión-volumen mayor, tendrá más moles de hidrógeno

    Presión y densidad - Puntos clave

    • La presión es la fuerza que ejerce una sustancia sobre otra, dividida por el área de la sustancia receptora. Para un gas, la presión es la fuerza ejercida por un gas sobre las paredes de su recipiente, dividida por el área del recipiente.
    • Ladensidad es la masa por volumen (m/V) de una sustancia. Para los gases, solemos utilizar la densidad numérica, que sería el número de moles (n) por volumen (n/V).
    • La presión y la densidad tienen una relación directa, lo que significa que si una aumenta, también lo hace la otra.

      Dicho matemáticamente

      $$P \propto \frac{n}{V}$$

      Donde P es la presión, n es el número de moles, V es el volumen y ∝ es el símbolo de "proporcional a".

      • Esto también significa que la presión es directamente proporcional al número de moles, pero inversamente proporcional (una sube, la otra baja) al volumen, ya que el volumen está en el denominador.

    Preguntas frecuentes sobre Presión y Densidad
    ¿Qué es la presión en química?
    La presión en química es la fuerza ejercida por las partículas de un gas sobre las paredes del recipiente que lo contiene.
    ¿Cómo se calcula la densidad?
    La densidad se calcula dividiendo la masa de una sustancia por su volumen (D = m/v).
    ¿Cuál es la relación entre presión y volumen en los gases?
    La relación entre presión y volumen en los gases está dada por la ley de Boyle, que establece que a temperatura constante, la presión es inversamente proporcional al volumen.
    ¿Por qué es importante la densidad en química?
    La densidad es importante en química porque ayuda a identificar sustancias y a determinar sus propiedades y comportamientos en diferentes condiciones.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    ¿Cuál de las siguientes opciones representa la relación entre presión y densidad?

    Verdadero o Falso: La presión y el volumen son inversamente proporcionales

    Verdadero o Falso: La presión y el número de moles son inversamente proporcionales

    Siguiente
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Química

    • Tiempo de lectura de 9 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    Únete a más de 30 millones de estudiantes que aprenden con nuestra aplicación gratuita Vaia.

    La primera plataforma de aprendizaje con todas las herramientas y materiales de estudio que necesitas.

    Intent Image
    • Edición de notas
    • Tarjetas de memoria
    • Asistente de IA
    • Explicaciones
    • Exámenes simulados