Cuando haces palomitas, ¿hay alguna forma de saber qué palomitas van a estallar primero? Por desgracia, la respuesta a esta pregunta es no. Al igual que las palomitas, es imposible predecir cuál o cuándo se desintegrará un átomo, y una vez que un átomo sufre una desintegración radiactiva, no puede volver a convertirse en lo que era antes de que se produjera la desintegración. En algunos casos, estos átomos considerados radiactivos pueden utilizarse en dataciónradiactiva, ayudando a geólogos y paleontólogos a determinar la edad de ciertas cosas que se encuentran a nuestro alrededor.
Así pues, adentrémonos de lleno en el mundo de la dataciónradiactiva.
En primer lugar, hablaremos de la definición de datación radiactiva.
A continuación, veremos las técnicas y métodos que rodean a la datación radiactiva.
A continuación, aprenderemos la fórmula de datación radiactiva y también veremos algunos ejemplos.
Definición de datación radiactiva
Para poder comprender la datación radiactiva, debemos repasar los conceptos básicos de los isótopos radiactivos. Los isótopos son átomos de un mismo elemento que poseen el mismo número de protones y distinto número de neutrones en su núcleo.
Ahora bien, un isótopo radiactivo es un isótopo que tiene un núcleo inestable. Como el núcleo de un isótopo radiactivo no es estable, sufrirá espontáneamente una desintegración radiactiva (o nuclear ) para convertirse en un nucleido hijo (también llamado isótopo hijo) que contiene un núcleo estable.
El proceso en el que el núcleo de un isótopo radiactivo (el isótopo padre) sufre una desintegración para convertirse en un nucleido hija estable (también llamado isótopo hija) se denomina desintegración radiactiva.
Un nuclido hija resulta de la desintegración radiactiva de un isótopo padre. El nucleido hijo (isótopo hijo) se desintegrará en un átomo diferente en relación con el isótopo padre.
Un Nuclido es una instancia particular de un átomo de un núcleo atómico, por ejemplo, \(^{16}_{8}\text{O}\), es un núcleo particular de oxígeno.
Por ejemplo, el isótopo radiactivo del Nitrógeno tiene un núcleo inestable, y sufre espontáneamente una desintegración beta para convertirse en un núcleo estable de oxígeno. Durante la desintegración beta, un tipo de desintegración radiactiva, se emite una partícula beta (o electrón) desde un núcleo atómico.
¿Buscas una explicación detallada de los radioisótopos o de los distintos tipos de desintegración nuclear? Consulta"Isótopos radiactivos" y"Equilibrio de ecuaciones nucleares".
Veamos ahora la definición de datación radiactiva .
La dataciónradiactiva consiste en utilizar la vida media de los nucleidos para determinar la edad de un fósil u objeto.
Se denomina vida media de un isótopo radiactivo al tiempo que tarda en desintegrarse el 50% de su núcleo.
En términos más sencillos, en la datación radiactiva los científicos cuentan el número de isótopos padres y de isótopos hijos formados a partir de la desintegración nuclear para determinar cuántas vidas medias han transcurrido y proporcionar una sugerencia de la edad de un objeto.
Por ejemplo, el isótopo radiactivo potasio-40 tiene una semivida de 1.300 millones de años, lo que significa que la mitad de los átomos de la muestra de potasio-40 tardan 1.300 millones de años en desintegrarse en calcio-40 y argón-40.
Dependiendo del objeto que los científicos intenten estudiar, pueden utilizarse distintas técnicas de datación radiactiva. Por ejemplo, el potasio-40 puede utilizarse en la datación de rocas de más de 100.000 años de antigüedad. Pero, ¿por qué potasio-40? Pues porque la mayoría de las rocas contienen potasio.
Sin embargo, el radioisótopo más utilizado en las técnicas de datación radiactiva es probablemente el carbono-14. El carbono-14 es un isótopo radiactivo del carbono que tiene una semivida de 5.720 años, y la razón por la que es muy útil en la datación de fósiles y algunas rocas es que tiene una semivida corta en comparación con otros átomos radiactivos. Así que, utilizando el carbono-14, los científicos pueden obtener una edad más precisa. Esta técnica se denomina datación por radiocarbono (14C), y es útil para datar objetos hasta hace 40.000 años.
La siguiente figura muestra los isótopos estables e inestables del carbono (carbono-12 y carbono-13), incluida la desintegración radiactiva del isótopo inestable14Cen 14N. A medida que pasa el tiempo, el carbono-14 se desintegra en nitrógeno-14, ¡liberando mucha energía!
Otras técnicas de datación consisten en utilizar un sistema de uranio-plomo (U-Pb ) para datar rocas volcánicas, y renio-osmio (Re-Os) para datar meteoritos de hierro.
Método de datación radiactiva
Ahora que sabemos qué son los isótopos radiactivos y cómo pueden utilizarse en la datación radiactiva, vamos a profundizar en el método utilizado en el laboratorio para determinar la edad de una roca.
En este caso, se utiliza un espectrómetro de masaspara medir el número de átomos de un elemento y determinar la abundancia de los isótopos padre e hija (relación padre/hija) presentes en la roca. A continuación, se calcula matemáticamente la edad de la roca utilizando la semivida de los isótopos radiactivos implicados.
Fórmula de datación radiactiva
Una vez que los geólogos determinan las abundancias isotópicas de cada elemento padre/hijo mediante el espectrómetro de masas, se puede utilizar la fórmula de datación radiactiva que se indica a continuación para hallar la edad de la roca.
$$ t = \frac{1}{\lambda}{texto{ln}(\frac{D}{P}) $$
Donde
\( t \) es igual a la edad de la roca u objeto
\( \lambda \) es la constante de desintegración
\( D \) es el número de átomos del isótopo hijo
\( P \) es el número de átomos del isótopo padre
Ahora, ¡pongamos en práctica esta fórmula! Supongamos que has encontrado una roca que contiene 0,200 mg de Pb-206 por cada 1.000 mg de U-238. Utilizando métodos de laboratorio, has averiguado que la roca tiene 1,000 mg de U-206 y 1,231 mg de U-238.
Como la semivida de la desintegración del U-238 en Pb-206 es de \( \text {4,5} \times \text {10}^{9} \) años y la constante de desintegración es de \( \text {1,5} \times \text {10}^{-10} \) años-1, ¿cómo podemos averiguar la edad de esa roca? ¡Averigüémoslo!
Por el problema, sabemos que el U-238 es el isótopo padre y el Pb-206 es el isótopo hijo formado a partir de la desintegración del núcleo del isótopo padre. Ahora sólo tenemos que introducir los valores en la fórmula de datación radiactiva.
$$ t = 1,5 veces 10^{-10}}{texto{ln}(\frac{1.000}{0,231}) = 1,7 veces 10^{9}{texto{ años} $$
Ejemplos de datación radiactiva
Por último, veamos algunos ejemplos relacionados con la datación radiactiva. Para predecir la edad de la Tierra, se puede utilizar la relación Rb/Sr. Según los investigadores, ¡la datación radiactiva sugiere que la Tierra tiene unos \( \text {4,53} \times \text {10}^{9} \) años!
Figura 4. Edad de la Tierra, Isadora Santos - StudySmarter Originals.
¡La datación radiactiva también se ha utilizado para determinar la edad de distintas montañas y volcanes! Por ejemplo, se descubrió que la edad de una roca encontrada en la cima del Gran Cañón, producida por una erupción volcánica, ¡era de 1.143 millones de años! Sin embargo, la datación radiactiva no siempre es correcta, y si hay contaminación, puede dar un resultado de fecha incorrecto.
Ahora, ¡espero que hayas podido comprender un poco mejor la datación radiactiva!
Datación radiactiva - Puntos clave
El proceso en el que el núcleo de un isótopo radiactivo (el isótopo padre) sufre una desintegración para convertirse en un isótopo hijo estable se denomina desintegración radiactiva.
Ladatación radiactiva consiste en utilizar la semivida de los nucleidos para determinar la edad de un fósil u objeto.
Se denomina vida media de un isótopo radiactivo al tiempo que tarda en desintegrarse el 50% de su núcleo.
Referencias
Zumdahl, S. S., Zumdahl, S. A., & Decoste, D. J. (2019). Química. Cengage Learning Asia Pte Ltd.
Theodore Lawrence Brown, Eugene, H., Bursten, B. E., Murphy, C. J., Woodward, P. M., Stoltzfus, M. W., & Lufaso, M. W. (2018). Química : la ciencia central (14ª ed.). Pearson.
Graham, I. (2020, 30 de septiembre). Datación radiactiva. Museo Australiano. https://australian.museum/learn/minerals/shaping-earth/radioactive-dating/
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt
Digital Content Specialist
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.